16.若i為虛數(shù)單位,a、b∈R,且$\frac{a+2i}{i}$=b+i,則ab=(  )
A.-1B.1C.-2D.2

分析 利用復數(shù)的運算法則、復數(shù)相等即可得出.

解答 解:a、b∈R,且$\frac{a+2i}{i}$=b+i,
∴a+2i=bi-1,
∴a=-1,b=2.
則ab═-2.
故選:C.

點評 本題考查了復數(shù)的運算法則、復數(shù)相等,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且2sin(A-B)=asinA-bsinB,a≠b,則c=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sinωx-$\frac{1}{2}$cosωx(ω>0),將函數(shù)y=|f(x)|的圖象向左平移$\frac{π}{9}$個單位長度后關(guān)于y軸對稱,則當ω取最小值時,g(x)=cos(ωx+$\frac{π}{4}$)的單調(diào)遞減區(qū)間為( 。
A.[-$\frac{π}{3}$+$\frac{2kπ}{3}$,$\frac{π}{2}$+$\frac{2kπ}{3}$](k∈Z)B.[-$\frac{π}{3}$+$\frac{4kπ}{3}$,$\frac{π}{2}$+$\frac{4kπ}{3}$](k∈Z)
C.[-$\frac{π}{6}$+$\frac{2kπ}{3}$,$\frac{π}{2}$+$\frac{2kπ}{3}$](k∈Z)D.[-$\frac{π}{6}$+$\frac{4kπ}{3}$,$\frac{π}{2}$+$\frac{4kπ}{3}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知二次函數(shù)f(x)=$\frac{1}{3}$x2+$\frac{2}{3}$x.數(shù)列{an}的前n項和為Sn,點(n,Sn)(n∈N*)在二次函數(shù)y=f(x)的圖象上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=anan+1cos[(n+1)π](n∈N*),數(shù)列{bn}的前n項和為Tn,若Tn≥tn2對n∈N*恒成立,求實數(shù)t的取值范圍;
(Ⅲ)在數(shù)列{an}中是否存在這樣一些項:${a}_{{n}_{1}}$,${a}_{{n}_{2}}$,a${\;}_{{n}_{3}}$,…,a${\;}_{{n}_{k}}$這些項都能夠構(gòu)成以a1為首項,q(0<q<5)為公比的等比數(shù)列{a${\;}_{{n}_{k}}$}?若存在,寫出nk關(guān)于k的表達式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在平面直角坐標系中,動圓經(jīng)過點M(0,t-2),N(0,t+2),P(-2,0).其中t∈R.
(1)求動圓圓心E的軌跡方程;
(2)過點P作直線l交軌跡E于不同的兩點A,B,直線OA與直線OB分別交直線x=2于兩點C,D,記△ACD與△BCD的面積分別為S1,S2.求S1+S2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知拋物線y2=4$\sqrt{3}$x的焦點為F,A、B為拋物線上兩點,若$\overrightarrow{AF}$=3$\overrightarrow{FB}$,O為坐標原點,則△AOB的面積為( 。
A.8$\sqrt{3}$B.4$\sqrt{3}$C.2$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在△ABC中,角A、B、C的對邊分別為a、b、c,已知2cos(B-C)-1=4cosBcosC.
(1)求A;
(2)若a=$\sqrt{7}$,△ABC的面積為$\frac{3\sqrt{3}}{2}$,求b+c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.計算下列格式:
(1)(2a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$);
(2)(m${\;}^{\frac{1}{4}}$n${\;}^{-\frac{3}{8}}$)8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.復數(shù)$z=\frac{{{i^{2017}}}}{{1+{i^{2015}}}}$,則z在復平面上對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習冊答案