已知函數(shù)為實(shí)常數(shù))

(1)若,求的單調(diào)區(qū)間;

(2)若,設(shè)在區(qū)間的最小值為,求的表達(dá)式.

 

【答案】

(1)增區(qū)間為,,減區(qū)間為,  

(2)

【解析】本試題主要考查了函數(shù)的單調(diào)性和最值的綜合運(yùn)用。

解(1)                1分 

當(dāng)時,,對稱軸,

所以增區(qū)間為,減區(qū)間為           3分

當(dāng)時,,對稱軸

所以增區(qū)間為,減區(qū)間為        5分

綜上所述:增區(qū)間為,,減區(qū)間為,7分

(2)               8分

對稱軸為                                   9分

 當(dāng),即時,            11分

當(dāng),即時,13分

當(dāng),即時,          14分

綜上所述:

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù)為實(shí)常數(shù))(Ⅰ)若函數(shù)為奇函數(shù),求此函數(shù)的單調(diào)區(qū)間;(Ⅱ)記,當(dāng),試討論函數(shù)的圖象與函數(shù)的圖象的交點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)為實(shí)常數(shù)).

(1)若,作函數(shù)的圖像;

(2)設(shè)在區(qū)間上的最小值為,求的表達(dá)式;

(3)設(shè),若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù)為實(shí)常數(shù))(Ⅰ)若函數(shù)為奇函數(shù),求此函數(shù)的單調(diào)區(qū)間;(Ⅱ)記,當(dāng),試討論函數(shù)的圖象與函數(shù)的圖象的交點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市嘉定區(qū)高三上學(xué)期期末考試(一模)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)為實(shí)常數(shù)).

(1)若函數(shù)圖像上動點(diǎn)到定點(diǎn)的距離的最小值為,求實(shí)數(shù)的值;

(2)若函數(shù)在區(qū)間上是增函數(shù),試用函數(shù)單調(diào)性的定義求實(shí)數(shù)的取值范圍;

(3)設(shè),若不等式有解,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年江西省高二第二學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題

(本大題共14分)

已知函數(shù)為實(shí)常數(shù))的兩個極值點(diǎn)為,且滿足

(1)求的取值范圍;

(2)比較的大小.

 

查看答案和解析>>

同步練習(xí)冊答案