設(shè)函數(shù)f(x)=2x,其反函數(shù)記為f-1(x),則函數(shù)y=f(x)+f-1(x)(x∈[1,2])的值域?yàn)?u>    .
【答案】分析:本題考查反函數(shù)的求法、指數(shù)式和對(duì)數(shù)式的互化、函數(shù)值域的求法等函數(shù)知識(shí).將y=2x作為方程利用指數(shù)式和對(duì)數(shù)式的互化解出x,然后確定函數(shù)y=f(x)+f-1(x)(x∈[1,2])的值域問(wèn)題得解.
解答:解:∵y=2x
∴x=log2y
即x=log2y
故函數(shù)y=2x的反函數(shù)為y=log2x
∴y=f(x)+f-1(x)=2x+log2x,
其在[1,2]上的單調(diào)增函數(shù),
則函數(shù)y=f(x)+f-1(x)(x∈[1,2])的值域?yàn)閇2,5]
故答案為:[2,5].
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是反函數(shù),其中根據(jù)原函數(shù)的解析式,求出反函數(shù)的解析式,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2、設(shè)函數(shù)f(x)=2x+3,g(x)=3x-5,則f(g(1))=
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定實(shí)數(shù)a(a≠
12
),設(shè)函數(shù)f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的導(dǎo)數(shù)f′(x)的圖象為C1,C1關(guān)于直線y=x對(duì)稱(chēng)的圖象記為C2
(Ⅰ)求函數(shù)y=f′(x)的單調(diào)區(qū)間;
(Ⅱ)對(duì)于所有整數(shù)a(a≠-2),C1與C2是否存在縱坐標(biāo)和橫坐標(biāo)都是整數(shù)的公共點(diǎn)?若存在,請(qǐng)求出公共點(diǎn)的坐標(biāo);若不若存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
(2x+1)(3x+a)
x
為奇函數(shù),則a=
-
3
2
-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2x+x-4,則方程f(x)=0一定存在根的區(qū)間為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
-2x+m2x+n
(m、n為常數(shù),且m∈R+,n∈R).
(Ⅰ)當(dāng)m=2,n=2時(shí),證明函數(shù)f(x)不是奇函數(shù);
(Ⅱ)若f(x)是奇函數(shù),求出m、n的值,并判斷此時(shí)函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案