【題目】如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,,,.
(1)求證:;
(2)求直線與平面所成角的正弦值;
(3)線段上是否存在點(diǎn),使得直線平面若存在,求的值;若不存在,請說明理由.
【答案】(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)線段上存在點(diǎn),使得平面,且.
【解析】
(I)根據(jù)面面垂直的性質(zhì)定理,證得平面,由此證得.(II)以為軸,軸,軸建立空間直角坐標(biāo)系,通過計(jì)算直線的方向向量和平面的法向量,由此計(jì)算出線面角的正弦值.(III)設(shè),用表示出點(diǎn)的坐標(biāo),利用直線的方向向量和平面的法向量垂直列方程,解方程求得的值,由此判斷存在符合題意的點(diǎn).
解:(Ⅰ)證明:因?yàn)?/span>為正方形,
所以.
又因?yàn)槠矫?/span>平面,
且平面平面,
所以平面.
所以.
(Ⅱ)由(Ⅰ)可知,平面,所以,.
因?yàn)?/span>,所以兩兩垂直.
分別以為軸,軸,軸建立空間直角坐標(biāo)系(如圖).
因?yàn)?/span>,,
所以,
所以.
設(shè)平面的一個法向量為,
則 即
令,則,
所以.
設(shè)直線與平面所成角為,
則.
(Ⅲ)設(shè),
設(shè),則,
所以,所以,
所以.
設(shè)平面的一個法向量為,則
因?yàn)?/span>,所以
令,則,所以.
在線段上存在點(diǎn),使得平面等價于存在,使得.
因?yàn)?/span>,由,
所以,
所以線段上存在點(diǎn),使得平面,且.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線的方程為,.
(1)若直線在軸、軸上的截距之和為-1,求坐標(biāo)原點(diǎn)到直線的距離;
(2)若直線與直線:和:分別相交于、兩點(diǎn),點(diǎn)到、兩點(diǎn)的距離相等,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若直線與軸,軸的交點(diǎn)分別為,圓以線段為直徑.
(Ⅰ)求圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線過點(diǎn),與圓交于點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,且上焦點(diǎn)為,過的動直線與橢圓相交于、兩點(diǎn).設(shè)點(diǎn),記、的斜率分別為和.
(1)求橢圓的方程;
(2)如果直線的斜率等于,求的值;
(3)探索是否為定值?如果是,求出該定值;如果不是,求出的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天壇公園是明、清兩代皇帝“祭天”“祈谷”的場所.天壇公園中的圜丘臺共有三層(如圖1所示),上層壇的中心是一塊呈圓形的大理石板,從中心向外圍以扇面形石(如圖2所示).上層壇從第一環(huán)至第九環(huán)共有九環(huán),中層壇從第十環(huán)至第十八環(huán)共有九環(huán),下層壇從第十九環(huán)至第二十七環(huán)共有九環(huán);第一環(huán)的扇面形石有9塊,從第二環(huán)起,每環(huán)的扇面形石塊數(shù)比前一環(huán)多9塊,則第二十七環(huán)的扇面形石塊數(shù)是______;上、中、下三層壇所有的扇面形石塊數(shù)是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD為矩形,點(diǎn)A、E、B、F共面,且和均為等腰直角三角形,且90°.
(Ⅰ)若平面ABCD平面AEBF,證明平面BCF平面ADF;
(Ⅱ)問在線段EC上是否存在一點(diǎn)G,使得BG∥平面CDF,若存在,求出此時三棱錐G-ABE與三棱錐G-ADF的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四種說法中正確的有______.(填序號)①數(shù)據(jù)2,2,3,3,4,6,7,3的眾數(shù)與中位數(shù)相等;②數(shù)據(jù)1,3,5,7,9的方差是數(shù)據(jù)2,6,10,14,18的方差的一半;③一組數(shù)據(jù)的方差大小反映該組數(shù)據(jù)的波動性,若方差越大,則波動性越大,方差越小,則波動性越小.④頻率分布直方圖中各小長方形的面積等于相應(yīng)各組的頻數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,點(diǎn)是橢圓上的一個動點(diǎn),面積的最大值是.
(1)求橢圓的方程;
(2)已知點(diǎn),問是否存在直線與橢圓交于兩點(diǎn),且,若存在,求出直線斜率的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com