【題目】已知奇函數(shù)f(x)是定義在R上的可導函數(shù),其導函數(shù)為f′(x),當x>0時有2f(x)+xf′(x)>x2 , 則不等式(x+2014)2f(x+2014)+4f(﹣2)<0的解集為( )
A.(﹣∞,﹣2012)
B.(﹣2016,﹣2012)
C.(﹣∞,﹣2016)
D.(﹣2016,0)
【答案】A
【解析】解:由2f(x)+xf′(x)>x2 , (x>0); 得:2xf(x)+x2f′(x)<x3
即[x2f(x)]′<x3<0;
令F(x)=x2f(x);
則當x>0時,F(xiàn)'(x)<0,即F(x)在(0,+∞)上是減函數(shù),
∵f(x)為奇函數(shù),
∴F(x)=x2f(x)為奇函數(shù),
∴F(x)在(﹣∞,0)上是減函數(shù),
∴F(x+2014)=(x+2014)2f(x+2014),F(xiàn)(﹣2)=4f(﹣2);
即不等式等價為F(x+2014)+F(﹣2)<0;
即F(x+2014)<﹣F(﹣2)=F(2),
∴x+2014<2,∴x<﹣2012;
∴原不等式的解集是(﹣∞,﹣2012).
故選:A.
【考點精析】關(guān)于本題考查的利用導數(shù)研究函數(shù)的單調(diào)性,需要了解一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)兩相鄰的零點之間的距離為 ,將f(x)的圖象向左平移 個單位后圖象對應的函數(shù)g(x)是偶函數(shù). (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的對稱軸及單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校在2012年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布表如圖所示.
成績分組 | 頻數(shù) | 頻率 |
(160,165] | 5 | 0.05 |
(165,170] | ① | 0.35 |
(170,175] | 30 | ② |
(175,180] | 20 | 0.20 |
(180,185] | 10 | 0.10 |
合計 | 100 | 1 |
(1)請先求出頻率分布表中①、②位置相應的數(shù)據(jù),再畫出頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學生,該高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學生進入第二輪面試,求第3、4、5組每組各抽取多少名學生進入第二輪面試?
(3)在(2)的前提下,學校決定在6名學生中隨機抽取2名學生接受A考官的面試,求第四組至少有一名學生被考官A面試的概率?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形, , 平面, , , , 是中點.
(I)求證:直線平面.
(II)求證:直線平面.
(III)在上是否存在一點,使得二面角的大小為,若存在,確定的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在(0, )上的函數(shù)f(x),f′(x)是它的導函數(shù),且恒有f(x)<f′(x)tanx成立,則( )
A.f( )> f( )
B.f(1)<2f( )sin1
C.f( )>f( )
D. f( )<f( )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關(guān)于函數(shù)f(x)=﹣tan2x,有下列說法: ①f(x)的定義域是{x∈R|x≠ +kπ,k∈Z}②f(x)是奇函數(shù) ③在定義域上是增函數(shù) ④在每一個區(qū)間(﹣ + , + )(k∈Z)上是減函數(shù) ⑤最小正周期是π其中正確的是( )
A.①②③
B.②④⑤
C.②④
D.③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com