18.log26-log23-3${\;}^{{{log}_3}\frac{1}{2}}}$+(${\frac{1}{4}}$)${\;}^{-\frac{1}{2}}}$=$\frac{5}{2}$.

分析 利用對數(shù)函數(shù)的性質(zhì)、運算法則求解.

解答 解:log26-log23-3${\;}^{{{log}_3}\frac{1}{2}}}$+(${\frac{1}{4}}$)${\;}^{-\frac{1}{2}}}$
=$lo{g}_{2}\frac{6}{3}$-$\frac{1}{2}+\frac{1}{\sqrt{\frac{1}{4}}}$
=1-$\frac{1}{2}+2$
=$\frac{5}{2}$.
故答案為:$\frac{5}{2}$.

點評 本題考查對數(shù)式化簡求值,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對數(shù)函數(shù)的性質(zhì)、運算法則的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定積分${∫}_{-1}^{1}$ $\sqrt{1-{x}^{2}}$dx=(  )
A.1B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.甲、乙兩人從5門不同的選修課中各選修2門,則甲、乙所選的課程中恰有1門相同的選法有60種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.學(xué)校生態(tài)園計劃移栽甲乙兩種植物各2株,設(shè)甲、乙兩種植物的成活率分別是$\frac{2}{3}$和$\frac{1}{2}$,且各株植物是否成活互不影響,求移栽的4株植物中:
(1)恰成活一株的概率;
(2)成活的株數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)命題p:“?x∈[1,2],x2-a≥0”,命題q:“?x0∈R,x02+2ax0+2-a=0”,若“p且q”為假命題,求實數(shù)a的取值范圍.
(2)已知p:|1-$\frac{x-1}{3}$|≤2,q:x2-2x+1-m2≤0(m>0),若p是q的必要而不充分必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.函數(shù)f(x)=$\frac{1}{2}$x2-(a+1)x+alnx.
(1)討論f(x)單調(diào)性;
(2)若f(x)恰有兩個零點,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x)=a-$\frac{2}{{2}^{x}+1}$(a∈R)是奇函數(shù),那么實數(shù)a的值等于( 。
A.1B.-1C.0D.±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知正四棱柱ABCD-A1B1C1D1中,AA1=4,AB=2,E是AA1的中點,則異面直線D1C與BE所成角的余弦值為( 。
A.$\frac{1}{5}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{\sqrt{10}}{10}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=m(x-2m)(x+m+3),g(x)=2x-4.若同時滿足條件:
①?x∈R,f(x)<0 或g(x)<0;
②?x∈(-∞,-4),f(x)g(x)<0.
求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案