【題目】在平面直角坐標(biāo)系中,已知曲線為參數(shù)),直線 為參數(shù), ),直線與曲線相切于點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程及點(diǎn)的極坐標(biāo);

2)曲線的直角坐標(biāo)方程為,直線的極坐標(biāo)方程為,直線與曲線交于在兩點(diǎn),記的面積為,的面積為,求的值.

【答案】1;點(diǎn)的極坐標(biāo)為;(216.

【解析】

1)直接利用消去參數(shù)法,將參數(shù)方程轉(zhuǎn)化為直角坐標(biāo)方程,再利用互化公式,將直角坐標(biāo)方程轉(zhuǎn)換為極坐標(biāo)方程,即可求出曲線和直線的極坐標(biāo)方程,聯(lián)立方程組,通過求出,從而可求出點(diǎn)的極坐標(biāo);

2)利用互化公式求出極坐標(biāo)方程,設(shè),將代入的極坐標(biāo)方程,根據(jù)韋達(dá)定理求出,,進(jìn)而求出,從而可求出的值.

解:(1已知曲線為參數(shù)),

消去參數(shù),可得曲線的直角坐標(biāo)方程為

代入得的極坐標(biāo)方程為,

由于直線為參數(shù),,

可得的極坐標(biāo)方程為),

由于直線與曲線相切于點(diǎn)

代入曲線,得,

,得,

,所以,則

此時(shí),所以點(diǎn)的極坐標(biāo)為.

2)由于的直角坐標(biāo)方程為,則圓心,

極坐標(biāo)方程為:,

設(shè),,

代入的極坐標(biāo)方程,

,,

所以,,所以,

又因?yàn)?/span>,

,

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線過原點(diǎn)且傾斜角為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.在平面直角坐標(biāo)系中,曲線與曲線關(guān)于直線對稱.

(Ⅰ)求曲線的極坐標(biāo)方程;

(Ⅱ)若直線過原點(diǎn)且傾斜角為,設(shè)直線與曲線相交于,兩點(diǎn),直線與曲線相交于,兩點(diǎn),當(dāng)變化時(shí),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點(diǎn)到定點(diǎn)的距離比到定直線的距離小1.

(Ⅰ)求點(diǎn)的軌跡的方程;

(Ⅱ)過點(diǎn)任意作互相垂直的兩條直線,分別交曲線于點(diǎn).設(shè)線段, 的中點(diǎn)分別為,求證:直線恒過一個(gè)定點(diǎn);

(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生活超市有一專柜預(yù)代理銷售甲乙兩家公司的一種可相互替代的日常生活用品.經(jīng)過一段時(shí)間分別單獨(dú)試銷甲乙兩家公司的商品,從銷售數(shù)據(jù)中隨機(jī)各抽取50天,統(tǒng)計(jì)每日的銷售數(shù)量,得到如下的頻數(shù)分布條形圖.甲乙兩家公司給該超市的日利潤方案為:甲公司給超市每天基本費(fèi)用為90元,另外每銷售一件提成1元;乙公司給超市每天的基本費(fèi)用為130元,每日銷售數(shù)量不超過83件沒有提成,超過83件的部分每件提成10元.

(Ⅰ)求乙公司給超市的日利潤(單位:元)與日銷售數(shù)量的函數(shù)關(guān)系;

(Ⅱ)若將頻率視為概率,回答下列問題:

1)求甲公司產(chǎn)品銷售數(shù)量不超過87件的概率;

2)如果僅從日均利潤的角度考慮,請你利用所學(xué)過的統(tǒng)計(jì)學(xué)知識為超市作出抉擇,選擇哪家公司的產(chǎn)品進(jìn)行銷售?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在邊長為2的菱形中,,將菱形沿對角線折起,使得平面平面,則所得三棱錐的外接球表面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年是新中國成立七十周年,新中國成立以來,我國文化事業(yè)得到了充分發(fā)展,尤其是黨的十八大以來,文化事業(yè)發(fā)展更加迅速,下圖是從2013 年到 2018 年六年間我國公共圖書館業(yè)機(jī)構(gòu)數(shù)(個(gè))與對應(yīng)年份編號的散點(diǎn)圖(為便于計(jì)算,將 2013 年編號為 1,2014 年編號為 2,…,2018年編號為 6,把每年的公共圖書館業(yè)機(jī)構(gòu)個(gè)數(shù)作為因變量,把年份編號從 1 到 6 作為自變量進(jìn)行回歸分析),得到回歸直線,其相關(guān)指數(shù),給出下列結(jié)論,其中正確的個(gè)數(shù)是( )

①公共圖書館業(yè)機(jī)構(gòu)數(shù)與年份的正相關(guān)性較強(qiáng)

②公共圖書館業(yè)機(jī)構(gòu)數(shù)平均每年增加13.743個(gè)

③可預(yù)測 2019 年公共圖書館業(yè)機(jī)構(gòu)數(shù)約為3192個(gè)

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,直線與拋物線交于,兩點(diǎn).

1)若,求直線的方程;

2)過點(diǎn)作直線交拋物線,兩點(diǎn),若線段,的中點(diǎn)分別為,直線軸的交點(diǎn)為,求點(diǎn)到直線距離和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】楊輝三角,又稱帕斯卡三角,是二項(xiàng)式系數(shù)在三角形中的一種幾何排列,在我國南宋數(shù)學(xué)家楊輝所著的《評解九章算法》(年)一書中用如圖所示的三角形解釋二項(xiàng)式乘方展開式的系數(shù)規(guī)律,現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:,,,,,,,,,,,…….記作數(shù)列,若數(shù)列的前項(xiàng)和為,則=(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交通安全法有規(guī)定:機(jī)動車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速行駛;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行.機(jī)動車行經(jīng)沒有交通信號的道路時(shí),遇行人橫過馬路,應(yīng)當(dāng)避讓.我們將符合這條規(guī)定的稱為“禮讓斑馬線”,不符合這條規(guī)定的稱為“不禮讓斑馬線”.下表是六安市某十字路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員“不禮讓斑馬線”行為的統(tǒng)計(jì)數(shù)據(jù):

月份

1

2

3

4

5

“不禮讓斑馬線”的駕駛員人數(shù)

120

105

100

85

90

1)根據(jù)表中所給的5個(gè)月的數(shù)據(jù),可用線性回歸模型擬合的關(guān)系,請用相關(guān)系數(shù)加以說明;

2)求“不禮讓斑馬線”的駕駛員人數(shù)關(guān)于月份之間的線性回歸方程;

3)若從4,5月份“不禮讓斑馬線”的駕駛員中分別選取4人和2人,再從所選取的6人中任意抽取2人進(jìn)行交規(guī)調(diào)查,求抽取的2人分別來自兩個(gè)月份的概率;

參考公式:線性回歸方程,其中,.

查看答案和解析>>

同步練習(xí)冊答案