【題目】若動(dòng)圓與圓外切,且與直線相切,則動(dòng)圓圓心的軌跡方程是( )

A. B. C. D.

【答案】C

【解析】

令動(dòng)圓圓心P的坐標(biāo)為(x,y),C1(5,0),動(dòng)圓得半徑為r,則根據(jù)兩圓相外切及直線與圓相切得性質(zhì)可得Px,y)到C1(5,0)與直線x5的距離相等,由拋物線定義可求.

設(shè)圓的圓心C1(5,0),動(dòng)圓圓心P的(x,y),半徑為r,

xx3,PQ⊥直線x5,Q為垂足,因圓Px3相切,故圓P到直線x的距離PQr+2,又PC1r+2,

因此Px,y)到C1(5,0)與直線x的距離相等,P的軌跡為拋物線,焦點(diǎn)為C1(5,0),準(zhǔn)線x,

頂點(diǎn)為(0,0),

開(kāi)口向右,可得P=10,方程為:

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè):實(shí)數(shù)滿足,:實(shí)數(shù)滿足.

(1)若,且為真,求實(shí)數(shù)的取值范圍;

(2)若,且的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線x2=4y

(1)求拋物線在點(diǎn)P(2,1)處的切線方程;

(2)若不過(guò)原點(diǎn)的直線l與拋物線交于A,B兩點(diǎn)(如圖所示),且OAOB,|OA|=|OB|,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面,,的中點(diǎn),是線段上的一動(dòng)點(diǎn).

(1)當(dāng)是線段的中點(diǎn)時(shí),證明:平面;

(2)當(dāng)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校微信公眾號(hào)收到非常多的精彩留言,學(xué)校從眾多留言者中抽取了100人參加“學(xué)校滿意度調(diào)查”,其留言者年齡集中在之間,根據(jù)統(tǒng)計(jì)結(jié)果,做出頻率分布直方圖如下:

(1)求這100位留言者年齡的平均數(shù)和中位數(shù);

(2)學(xué)校從參加調(diào)查的年齡在的留言者中,按照分層抽樣的方法,抽出了6人參加“精彩留言”經(jīng)驗(yàn)交流會(huì),贈(zèng)與年齡在的留言者每人一部?jī)r(jià)值1000元的手機(jī),年齡在的留言者每人一套價(jià)值700元的書(shū),現(xiàn)要從這6人中選出3人作為代表發(fā)言,求這3位發(fā)言者所得紀(jì)念品價(jià)值超過(guò)2300元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的多面體中,已知 , 是正三角形, , , 的中點(diǎn).

1)求證: 平面

2)求證:平面平面;

3)求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省為了確定合理的階梯電價(jià)分檔方案,對(duì)全省居民用量進(jìn)行了一次抽樣調(diào)查,得到居民月用電量(單位:度)的頻率分布直方圖(如圖所示),求:

1)若要求80%的居民能按基本檔的電量收費(fèi),則基本檔的月用電量應(yīng)定為多少度?

2)由頻率分布直方圖可估計(jì),居民月用電量的眾數(shù)、中位數(shù)和平均數(shù)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】4月16日摩拜單車(chē)進(jìn)駐大連市旅順口區(qū),綠色出行引領(lǐng)時(shí)尚,旅順口區(qū)對(duì)市民進(jìn)行“經(jīng)常使用共享單車(chē)與年齡關(guān)系”的調(diào)查統(tǒng)計(jì),若將單車(chē)用戶(hù)按照年齡分為“年輕人”(20歲~39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類(lèi),抽取一個(gè)容量為200的樣本,將一周內(nèi)使用的次數(shù)為6次或6次以上的稱(chēng)為“經(jīng)常使用單車(chē)用戶(hù)”。使用次數(shù)為5次或不足5次的稱(chēng)為“不常使用單車(chē)用戶(hù)”,已知“經(jīng)常使用單車(chē)用戶(hù)”有120人,其中是“年輕人”,已知“不常使用單車(chē)用戶(hù)”中有是“年輕人”.

(1)請(qǐng)你根據(jù)已知的數(shù)據(jù),填寫(xiě)下列列聯(lián)表:

年輕人

非年輕人

合計(jì)

經(jīng)常使用單車(chē)用戶(hù)

不常使用單車(chē)用戶(hù)

合計(jì)

(2)請(qǐng)根據(jù)(1)中的列聯(lián)表,計(jì)算值并判斷能否有的把握認(rèn)為經(jīng)常使用共享單車(chē)與年齡有關(guān)?

(附:

當(dāng)時(shí),有的把握說(shuō)事件有關(guān);當(dāng)時(shí),有的把握說(shuō)事件有關(guān);當(dāng)時(shí),認(rèn)為事件是無(wú)關(guān)的)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為直線與曲線交于兩點(diǎn).

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若點(diǎn)的極坐標(biāo)為的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案