【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)寫出當(dāng)時(shí)直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)已知點(diǎn),直線與曲線相交于不同的兩點(diǎn),求的最大值.

【答案】(Ⅰ)直線的普通方程為,曲線的直角坐標(biāo)方程為(Ⅱ)

【解析】

(Ⅰ)當(dāng)時(shí),直接消參可得直線的普通方程:,對(duì)兩邊乘以,結(jié)合可得曲線的直角坐標(biāo)方程為:,問題得解。

(Ⅱ)顯然,點(diǎn)在直線上,聯(lián)立直線的參數(shù)方程及圓的普通方程可得:,即可求得:,,再利用參數(shù)的幾何意義可得:,整理可得:,問題得解。

解:(Ⅰ)當(dāng)時(shí),由,消去參數(shù)可得:,

即直線的普通方程為

,得

∴曲線的直角坐標(biāo)方程為.

(Ⅱ)顯然,點(diǎn)在直線上,

聯(lián)立得:,

設(shè),對(duì)應(yīng)的參數(shù)為,,

,

,

∴當(dāng)時(shí),取得最大值2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,點(diǎn)F為拋物線的焦點(diǎn),焦點(diǎn)F到直線3x-4y+3=0的距離為d1,焦點(diǎn)F到拋物線C的準(zhǔn)線的距離為d2,且。

(1)拋物線C的標(biāo)準(zhǔn)方程;

(2)若在x軸上存在點(diǎn)M,過點(diǎn)M的直線l分別與拋物線C相交于P、Q兩點(diǎn),且為定值,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,若動(dòng)點(diǎn)滿足:.

1)求動(dòng)點(diǎn)的軌跡的方程;

2)若點(diǎn),分別位于軸與軸的正半軸上,直線與曲線相交于,兩點(diǎn),且,請(qǐng)問在曲線上是否存在點(diǎn),使得四邊形為坐標(biāo)原點(diǎn))為平行四邊形?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 .

討論的單調(diào)性;

,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

某中學(xué)高二年級(jí)共有8個(gè)班,現(xiàn)從高二年級(jí)選10名同學(xué)組成社區(qū)服務(wù)小組,其中高二(1)班選取3名同學(xué),其它各班各選取1名同學(xué).現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué)到社區(qū)老年中心參加尊老愛老活動(dòng)(每位同學(xué)被選到的可能性相同).

1)求選出的3名同學(xué)來自不同班級(jí)的概率;

2)設(shè)為選出的同學(xué)來自高二(1)班的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知M為圓Cx2y24x14y450上任意一點(diǎn),且點(diǎn)Q(-2,3).

1)求|MQ|的最大值和最小值;

2)若Mm,n),求的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為橢圓的左焦點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成一個(gè)等邊三角形,直線與橢圓有且僅有一個(gè)交點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線軸交于,過點(diǎn)的直線與橢圓交于兩不同點(diǎn),,若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《國家中長(zhǎng)期教育改革和發(fā)展規(guī)劃2010-2020》指出,到2020年基本實(shí)現(xiàn)教育現(xiàn)代化,進(jìn)入人力資源強(qiáng)國行列,并提出要實(shí)現(xiàn)更高水平的普及教育,基本普及學(xué)前教育、鞏固提高九年義務(wù)教育、提高高等教育大眾化水平,從國家層面確立了教育的重要地位.隨著國家對(duì)教育的日益重視,教育經(jīng)費(fèi)投入也逐漸加大.下圖是我國2010年到2016年國家財(cái)政性教育經(jīng)費(fèi)投入(單位:萬億元)的散點(diǎn)圖,年份代碼為.

注:年份代碼1-7分別對(duì)應(yīng)年份2010-2016.

1)由散點(diǎn)圖可知國家財(cái)政性教育經(jīng)費(fèi)投入與年份代碼具有相關(guān)關(guān)系,試建立國家財(cái)政性教育經(jīng)費(fèi)投入與年份代碼的回歸方程;

2)預(yù)測(cè)2020年我國國家財(cái)政性教育經(jīng)費(fèi)投入的值是否能超過萬億.

附注:參考數(shù)據(jù):,,

參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.

查看答案和解析>>

同步練習(xí)冊(cè)答案