【題目】某工廠為生產(chǎn)一種精密管件研發(fā)了一臺(tái)生產(chǎn)該精密管件的車床,該精密管件有內(nèi)外兩個(gè)口徑,監(jiān)管部門規(guī)定“口徑誤差”的計(jì)算方式為:管件內(nèi)外兩個(gè)口徑實(shí)際長(zhǎng)分別為,標(biāo)準(zhǔn)長(zhǎng)分別為則“口徑誤差”為只要“口徑誤差”不超過(guò)就認(rèn)為合格,已知這臺(tái)車床分晝夜兩個(gè)獨(dú)立批次生產(chǎn).工廠質(zhì)檢部在兩個(gè)批次生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取40件作為樣本,經(jīng)檢測(cè)其中晝批次的40個(gè)樣本中有4個(gè)不合格品,夜批次的40個(gè)樣本中有10個(gè)不合格品.
(Ⅰ)以上述樣本的頻率作為概率,在晝夜兩個(gè)批次中分別抽取2件產(chǎn)品,求其中恰有1件不合格產(chǎn)品的概率;
(Ⅱ)若每批次各生產(chǎn)1000件,已知每件產(chǎn)品的成本為5元,每件合格品的利潤(rùn)為10元;若對(duì)產(chǎn)品檢驗(yàn),則每件產(chǎn)品的檢驗(yàn)費(fèi)用為2.5元;若有不合格品進(jìn)入用戶手中,則工廠要對(duì)用戶賠償,這時(shí)生產(chǎn)的每件不合格品工廠要損失25元.以上述樣本的頻率作為概率,以總利潤(rùn)的期望值為決策依據(jù),分析是否要對(duì)每個(gè)批次的所有產(chǎn)品作檢測(cè)?
【答案】(Ⅰ);(Ⅱ)晝批次不做檢測(cè)為好;夜批次做檢測(cè)為優(yōu).
【解析】
(Ⅰ)先分別求出晝批次和夜批次合格品的概率,再由獨(dú)立事件同時(shí)發(fā)生的概率公式,即可求解;
(Ⅱ)分別求出晝批次和夜批次不做檢測(cè)的利潤(rùn)期望值和都做檢測(cè)的利潤(rùn)期望值,加以對(duì)比,即可得出結(jié)論.
(Ⅰ)以樣本的頻率作為概率,在晝批次中隨機(jī)抽取1件為合格品的概率是,
在夜批次中隨機(jī)抽取1件為合格品的概率是,
故兩個(gè)批次中分別抽取2件產(chǎn)品,其中恰有1件不合格產(chǎn)品的概率為.
(Ⅱ)①若對(duì)所有產(chǎn)品不做檢測(cè),
設(shè)為晝批次中隨機(jī)抽取1件的利潤(rùn),的可能取值為10,,
所以的分布列為
10 | ||
0.9 | 0.1 |
所以,
故在不對(duì)所有產(chǎn)品做檢測(cè)的情況下,
1000件產(chǎn)品的利潤(rùn)的期望值為,
設(shè)為夜批次中隨機(jī)抽取1件的利潤(rùn),的可能取值為10,,
所以的分布列為
10 | ||
0.75 | 0.25 |
所以,
故在不對(duì)所有產(chǎn)品做檢測(cè)的情況下,
1000件產(chǎn)品的利潤(rùn)的期望值為,
②若對(duì)所有產(chǎn)品做檢測(cè),
晝批次1000件產(chǎn)品的合格品的期望為900件,不合格品的期望為100件,
所以利潤(rùn)為,
夜批次1000件產(chǎn)品的合格品的期望為750件,不合格品的期望為250件,
所以利潤(rùn)為,
綜上,晝批次不做檢測(cè)的利潤(rùn)期望6500大于做檢測(cè)的利潤(rùn)期望6000,
故晝批次不做檢測(cè)為好;
夜批次不做檢測(cè)的利潤(rùn)期望1250小于做檢測(cè)的利潤(rùn)期望3750,
故夜批次做檢測(cè)為優(yōu).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】新高考取消文理科,實(shí)行“3+3”,成績(jī)由語(yǔ)文、數(shù)學(xué)、外語(yǔ)統(tǒng)一高考成績(jī)和自主選考的3門普通高中學(xué)業(yè)水平考試等級(jí)性考試科目成績(jī)構(gòu)成.為了解各年齡層對(duì)新高考的了解情況,隨機(jī)調(diào)查50人(把年齡在[15,45)稱為中青年,年齡在[45,75)稱為中老年),并把調(diào)查結(jié)果制成如表:
(1)請(qǐng)根據(jù)上表完成下面2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為對(duì)新高考的了解與年齡(中青年、中老年)有關(guān)?
附:K2.
(2)現(xiàn)采用分層抽樣的方法從中老年人中抽取8人,再?gòu)倪@8人中隨機(jī)抽取2人進(jìn)行深入調(diào)查,求事件A:“恰有一人年齡在[45,55)”發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年末,武漢出現(xiàn)新型冠狀病毒(肺炎疫情,并快速席卷我國(guó)其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,目前沒(méi)有特異治療方法.防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無(wú)法明確排除新冠肺炎的發(fā)熱患者和確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,某社區(qū)將本社區(qū)的排查工作人員分為,兩個(gè)小組,排查工作期間社區(qū)隨機(jī)抽取了100戶已排查戶,進(jìn)行了對(duì)排查工作態(tài)度是否滿意的電話調(diào)查,根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)后,得到如下的列聯(lián)表.
是否滿意 組別 | 不滿意 | 滿意 | 合計(jì) |
組 | 16 | 34 | 50 |
組 | 2 | 45 | 50 |
合計(jì) | 21 | 79 | 100 |
(1)分別估計(jì)社區(qū)居民對(duì)組、組兩個(gè)排查組的工作態(tài)度滿意的概率;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認(rèn)為“對(duì)社區(qū)排查工作態(tài)度滿意”與“排查工作組別”有關(guān)?
附表:
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(0,2),B(0,﹣2),動(dòng)點(diǎn)P(x,y)滿足PA,PB的斜率之積為.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)已知直線l:y=kx+m,C的右焦點(diǎn)為F,直線l與C交于M,N兩點(diǎn),若F是△AMN的垂心,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是2020年2月15日至3月2日武漢市新增新冠肺炎確診病例的折線統(tǒng)計(jì)圖.則下列說(shuō)法不正確的是( )
A.2020年2月19日武漢市新增新冠肺炎確診病例大幅下降至三位數(shù)
B.武漢市在新冠肺炎疫情防控中取得了階段性的成果,但防控要求不能降低
C.2020年2月19日至3月2日武漢市新增新冠肺炎確診病例低于400人的有8天
D.2020年2月15日到3月2日武漢市新增新冠肺炎確診病例最多的一天比最少的一天多1549人
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,城市缺水問(wèn)題較為突出.某市為了節(jié)約生活用水,計(jì)劃在本市試行居民生活用水定額管理(即確定一個(gè)居民月均用水量標(biāo)準(zhǔn):用水量不超過(guò)的部分按照平價(jià)收費(fèi),超過(guò)的部分按照議價(jià)收費(fèi)).為了較為合理地確定出這個(gè)標(biāo)準(zhǔn),通過(guò)抽樣獲得了40位居民某年的月均用水量(單位:噸),按照分組制作了頻率分布直方圖,
(1)從頻率分布直方圖中估計(jì)該40位居民月均用水量的眾數(shù),中位數(shù);
(2)在該樣本中月均用水量少于1噸的居民中隨機(jī)抽取兩人,其中兩人月均用水量都不低于0.5噸的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)判斷函數(shù)在區(qū)間上的零點(diǎn)的個(gè)數(shù);
(2)記函數(shù)在區(qū)間上的兩個(gè)極值點(diǎn)分別為、,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為等差數(shù)列,各項(xiàng)為正的等比數(shù)列的前項(xiàng)和為,,,__________.在①;②;③這三個(gè)條件中任選其中一個(gè),補(bǔ)充在橫線上,并完成下面問(wèn)題的解答(如果選擇多個(gè)條件解答,則以選擇第一個(gè)解答記分).
(1)求數(shù)列和的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com