如圖,ABCD和ABEF都是邊長為1的正方形,AM=FN,現(xiàn)將兩個(gè)正方形沿AB折成一個(gè)直二面角,O∈AB,平面MON平面CBE.

(1)求角MON大;
(2)設(shè)AO=x,當(dāng)x為何值時(shí),三棱錐A-MON的體積V最大?并求出最大值.
(1)∵平面MON平面CBE
∴MOBC,ONBE
從而MO⊥AB,ON⊥AB
∴∠MON是二面角C-AB-E的平面角
∴∠MON=90°…6分;
(2)∵M(jìn)O=AO=x,ON=1-x,AO⊥平面MON
∴V=
1
3
1
2
x•(1-x)•x=
1
6
(-x3+x2)(0<x<1)…4分
則V′=-
1
2
x(x-
2
3

∵0<x<
2
3
時(shí),V′>0,
2
3
<x<1時(shí),V′<0…2分
∴當(dāng)x=
2
3
時(shí),V取得極大值,極大值為
2
81

即當(dāng)x=
2
3
時(shí),V有最大值為
2
81
…2分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,棱柱ABC-AwBwCw中,AwA,AwB,AwC都與平面ABC所成的角相等,∠CAB=90°,AC=AB=AwB=a,D為BC上的點(diǎn),且AwC平面ADBw.求:
(Ⅰ)AwC與平面ADBw的距離;
(Ⅱ)二面角Aw-AB-C的大;
(Ⅲ)ABw與平面ABC所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


如圖,已知△ABC中,∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD繞CD旋轉(zhuǎn)至
A′CD,使點(diǎn)A'與點(diǎn)B之間的距離A′B=
3

(1)求證:BA′⊥平面A′CD;
(2)求二面角A′-CD-B的大;
(3)求異面直線A′C與BD所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC中,∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD繞CD旋轉(zhuǎn)至A′CD,使A′B=
3

(1)求證:BA′⊥面A′CD;
(2)求異面直線A′C與BD所成角的余弦值.
(3)(理科做)求二面角A′-CD-B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如果正三棱錐的側(cè)面均為直角三角形,側(cè)面與底面所成的角為α,則α的值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

平行四邊形ABCD中,AB=3,AD=5,DB=4,以BD為棱把四邊形ABCD折成1200的二面角,則AC的長為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2.E是CC1的中點(diǎn),
(1)求銳二面角D-B1E-B的余弦值.
(2)試判斷AC與面DB1E的位置關(guān)系,并說明理由.
(3)設(shè)M是棱AB上一點(diǎn),若M到面DB1E的距離為
21
7
,試確定點(diǎn)M的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1所示的等邊△ABC的邊長為2a,CD是AB邊上的高,E、F分別是AC、BC邊的中點(diǎn).現(xiàn)將△ABC沿CD折疊成如圖2所示的直二面角A-DC-B.

(1)試判斷折疊后直線AB與平面DEF的位置關(guān)系,并說明理由;
(2)求四面體A-DBC的外接球體積與四棱錐D-ABFE的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,AC=BC=
1
2
AA1
,D是棱AA1的中點(diǎn),DC1⊥BD
(1)證明:DC1⊥BC
(2)求二面角A1-BD-C1的大。

查看答案和解析>>

同步練習(xí)冊答案