(本小題15分)已知,是實數(shù),方程有兩個實根,,數(shù)列滿足,,
(Ⅰ)求數(shù)列的通項公式(用,表示);
(Ⅱ)若,,求的前項和.
,
解析方法一:
(Ⅰ)由韋達定理知,又,所以
,
整理得
令,則.所以是公比為的等比數(shù)列.
數(shù)列的首項為:
.
所以,即.所以.
①當時,,,變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/bc/6/igs8k.gif" style="vertical-align:middle;" />.整理得,,.所以,數(shù)列成公差為的等差數(shù)列,其首項為.所以
.
于是數(shù)列的通項公式為
;……………………………………………………………………………5分
②當時,,
.
整理得
,.
所以,數(shù)列成公比為的等比數(shù)列,其首項為.所以.
于是數(shù)列的通項公式為.………………………………………………10分
(Ⅱ)若,,則,此時.由第(Ⅰ)步的結(jié)果得,數(shù)列的通項公式為,所以,的前項和為
以上兩式相減,整理得
所以.……………………………………………………………………………15分
方法二:
(Ⅰ)由韋達定理知,又,所以
,.
特征方程的兩個根為,.
①當時,通項由,得
解得.故
科目:高中數(shù)學 來源: 題型:
(本小題15分)已知函數(shù) (
(1)若函數(shù)在處有極值為,求的值;
(2)若對任意,在上單調(diào)遞增,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:寧波市2010屆高三三模考試文科數(shù)學試題 題型:解答題
(本小題15分)已知函數(shù)(
(1)若函數(shù)在處有極值為,求的值;
(2)若對任意,在上單調(diào)遞增,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:寧波市2010屆高三三?荚囄目茢(shù)學試題 題型:解答題
(本小題15分)已知拋物線,過點的直線交拋物線于兩點,且.
(1)求拋物線的方程;
(2)過點作軸的平行線與直線相交于點,若是等腰三角形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆浙江省高二下學期第二次月考數(shù)學試卷(解析版) 題型:解答題
(本小題15分)已知函數(shù)f(x)=(1+x)2-aln(1+x)2在(-2,-1)上是增函數(shù),
在(-∞,-2)上為減函數(shù).
(1)求f(x)的表達式;
(2)若當x∈時,不等式f(x)<m恒成立,求實數(shù)m的值;
(3)是否存在實數(shù)b使得關于x的方程f(x)=x2+x+b在區(qū)間[0,2]上恰好有兩個相異的實根,若存在,求實數(shù)b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com