【題目】已知四個函數(shù):①y=﹣x,②y=﹣ ,③y=x3 , ④y=x ,從中任選2個,則事件“所選2個函數(shù)的圖象有且僅有一個公共點”的概率為 .
【答案】
【解析】解:給出四個函數(shù):①y=﹣x,②y=﹣ ,③y=x3,④y=x ,
從四個函數(shù)中任選2個,基本事件總數(shù)n= ,
③④有兩個公共點(0,0),(1,1).
事件A:“所選2個函數(shù)的圖象有且只有一個公共點”包含的基本事件有:
①③,①④共2個,
∴事件A:“所選2個函數(shù)的圖象有且只有一個公共點”的概率為P(A)= = .
故答案為: .
從四個函數(shù)中任選2個,基本事件總數(shù)n= ,再利用列舉法求出事件A:“所選2個函數(shù)的圖象有且只有一個公共點”包含的基本事件的個數(shù),由此能求出事件A:“所選2個函數(shù)的圖象有且只有一個公共點”的概率.
科目:高中數(shù)學 來源: 題型:
【題目】已知點A,B分別為橢圓E: 的左,右頂點,點P(0,﹣2),直線BP交E于點Q, 且△ABP是等腰直角三角形.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)過點P的動直線l與E相交于M,N兩點,當坐標原點O位于以MN為直徑的圓外時,求直線l斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是等腰梯形,AD∥BC,BC=2AD,O為BD的中點.
(1)求證:CD∥平面POA;
(2)若PO⊥底面ABCD,CD⊥PB,AD=PO=2,求二面角A﹣PD﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓A:(x+1)2+y2=16,圓C過點B(1,0)且與圓A相切,設(shè)圓心C的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)過點B作兩條互相垂直的直線l1,l2,直線l1與E交于M,N兩點,直線l2與圓A交于P,Q兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以原點為極點,x軸的非負半軸為極軸,并在兩坐標系中取相同的長度單位,若直線l的極坐標方程是ρsin(θ+ )=2 ,且點P是曲線C: (θ為參數(shù))上的一個動點.
(Ⅰ)將直線l的方程化為直角坐標方程;
(Ⅱ)求點P到直線l的距離的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)預測,某地第n(n∈N*)個月共享單車的投放量和損失量分別為an和bn(單位:輛),其中an= ,bn=n+5,第n個月底的共享單車的保有量是前n個月的累計投放量與累計損失量的差.
(1)求該地區(qū)第4個月底的共享單車的保有量;
(2)已知該地共享單車停放點第n個月底的單車容納量Sn=﹣4(n﹣46)2+8800(單位:輛).設(shè)在某月底,共享單車保有量達到最大,問該保有量是否超出了此時停放點的單車容納量?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直角梯形ABCD中, 是邊長為2的等邊三角形,AB=5.沿CE將 折起,使B至 處,且 ;然后再將 沿DE折起,使A至 處,且面 面CDE, 和 在面CDE的同側(cè).
(Ⅰ) 求證: 平面CDE;
(Ⅱ) 求平面 與平面CDE所構(gòu)成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列有關(guān)結(jié)論正確的個數(shù)為( ) ①小趙、小錢、小孫、小李到4個景點旅游,每人只去一個景點,設(shè)事件A=“4個人去的景點不相同”,事件B=“小趙獨自去一個景點”,則 ;
②設(shè)函數(shù)f(x)存在導數(shù)且滿足 ,則曲線y=f(x)在點(2,f(2))處的切線斜率為﹣1;
③設(shè)隨機變量ξ服從正態(tài)分布N(μ,7),若P(ξ<2)=P(ξ>4),則μ與Dξ的值分別為μ=3,Dξ=7.
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com