【題目】設(shè)f(x)=|x﹣3|+|x﹣4|.
(1)求函數(shù) 的定義域;
(2)若存在實(shí)數(shù)x滿足f(x)≤ax﹣1,試求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:∵ ,
它與直線y=2交點(diǎn)的橫坐標(biāo)為 和 .
∴不等式 的定義域?yàn)?
(2)解:函數(shù)y=ax﹣1的圖象是過點(diǎn)(0,﹣1)的直線,
作出圖象,如下圖:
結(jié)合圖象可知,a取值范圍為
【解析】(1)求出f(x)=|x﹣3|+|x﹣4|與直線y=2交點(diǎn)的橫坐標(biāo)為 和 ,由此能求出不等式 的定義域.(2)函數(shù)y=ax﹣1的圖象是過點(diǎn)(0,﹣1)的直線,作出圖象,結(jié)合圖象能求出實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】掌握絕對(duì)值不等式的解法是解答本題的根本,需要知道含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD為直角梯形,∠C=∠CDA=90°,AD=2BC=2CD=2,P為平面ABCD外一點(diǎn),且PB⊥BD.
(1)求證:PA⊥BD;
(2)若直線l過點(diǎn)P,且直線l∥直線BC,試在直線l上找一點(diǎn)E,使得直線PC∥平面EBD;
(3)若PC⊥CD,PB=4,求四棱錐P﹣ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某住宅小區(qū)的平面圖呈圓心角為的扇形,小區(qū)的兩個(gè)出入口設(shè)置在點(diǎn)及點(diǎn)處,且小區(qū)里有一條平行于的小路。
(1)已知某人從沿走到用了分鐘,從沿走到用了分鐘,若此人步行的速度為每分鐘米,求該扇形的半徑的長(zhǎng)(精確到米)
(2)若該扇形的半徑為,已知某老人散步,從沿走到,再?gòu)?/span>沿走到,試確定的位置,使老人散步路線最長(zhǎng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點(diǎn)P作圓O的割線PBA與切線PE,E為切點(diǎn),連接AE、BE,∠APE的平分線與AE、BE分別交于點(diǎn)C、D,其中∠AEB=30°.
(1)求證:
(2)求∠PCE的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年,河北等8省公布了高考改革綜合方案將采取“3+1+2”模式,即語文、數(shù)學(xué)、英語必考,然后考生先在物理、歷史中選擇1門,再在思想政治、地理、化學(xué)、生物中選擇2門.為了更好進(jìn)行生涯規(guī)劃,甲同學(xué)對(duì)高一一年來的七次考試成績(jī)進(jìn)行統(tǒng)計(jì)分析,其中物理、歷史成績(jī)的莖葉圖如圖所示.
(1)若甲同學(xué)隨機(jī)選擇3門功課,求他選到物理、地理兩門功課的概率;
(2)試根據(jù)莖葉圖分析甲同學(xué)應(yīng)在物理和歷史中選擇哪一門學(xué)科?并說明理由;
(3)甲同學(xué)發(fā)現(xiàn),其物理考試成績(jī)(分)與班級(jí)平均分(分)具有線性相關(guān)關(guān)系,統(tǒng)計(jì)數(shù)據(jù)如下表所示,試求當(dāng)班級(jí)平均分為50分時(shí),其物理考試成績(jī).
參考數(shù)據(jù): ,,,.
參考公式:,,(計(jì)算時(shí)精確到).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點(diǎn)P作圓O的割線PBA與切線PE,E為切點(diǎn),連接AE、BE,∠APE的平分線與AE、BE分別交于點(diǎn)C、D,其中∠AEB=30°.
(1)求證:
(2)求∠PCE的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,過的直線與橢圓交于、兩點(diǎn),若是以為直角頂點(diǎn)的等腰直角三角形,則橢圓的離心率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的左、右焦點(diǎn)分別為、,是雙曲線上一點(diǎn),且軸,若的內(nèi)切圓半徑為,則其漸近線方程是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=emx﹣lnx﹣2.
(1)若m=1,證明:存在唯一實(shí)數(shù)t∈( ,1),使得f′(t)=0;
(2)求證:存在0<m<1,使得f(x)>0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com