如圖,已知直角梯形ABCD的上底BC=,BC∥AD,BC=AD,CD⊥AD,平面PDC⊥平面ABCD,△PCD是邊長為2的等邊三角形.

(1)證明:AB⊥PB;

(2)求三棱錐A-PBD的體積.

(1)在直角梯形ABCD中,

因為AD=2,BC=,CD=2,

所以AB=.

因為BC⊥CD,平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,所以BC⊥平面PDC,因此在Rt△BCP中,PB=.

因為BC∥AD所以AD⊥平面PDC,

所以在Rt△PAD中,

PA==2.

所以在△PAB中,PA2=AB2+PB2,所以AB⊥PB.

(2)過P作PE⊥DC,△PCD為等邊三角形,

∴E為DC中點,易得PE⊥平面ABCD,

且PE=,所以VA-PBD=VP-ABDSABD·PE

×(·AD·DC)·

×2×2×.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(1)求證:AB∥平面PCD
(2)求證:BC⊥平面PAC
(3)求二面角A-PC-D的平面角a的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖:已知四棱錐P-ABCD的底面為直角梯形,AD∥BC,∠BCD=90,PA=PB,PC=PD.
(Ⅰ)證明CD與平面PAD不垂直;
(Ⅱ)證明平面PAB⊥平面ABCD;
(Ⅲ)如果CD=AD+BC,二面角P-BC-A等于60°,求二面角P-CD-A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直角梯形ABCD的上底BC=
2
,BC∥AD,BC=
1
2
AD
CD⊥AD,PDC⊥,平面平面ABCD,△PCD是邊長為2的等邊三角形.
(1)證明:AB⊥PB;
(2)求二面角P-AB-D的大。
(3)求三棱錐A-PBD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:高三數(shù)學教學與測試 題型:044

如圖,已知直角梯形ABCD中,AB⊥BC,AB=AD=a,BC=3a,E是BC邊上一動點,以DE為棱把△CDE折起,使其成直二面角C-DE-A,求四棱錐C-ABED體積的最大值.

 

查看答案和解析>>

同步練習冊答案