已知函數(shù)f(x)=sin(2x+
π
6
)+
1
2
+m的圖象過(guò)點(diǎn)(
12
,0)
(1)求實(shí)數(shù)m的值及f(x)的周期及單調(diào)遞增區(qū)間;
(2)若x∈[0,
π
2
],求f(x)的值域.
考點(diǎn):三角函數(shù)的周期性及其求法,正弦函數(shù)的單調(diào)性,三角函數(shù)的最值
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)由函數(shù)f(x)=sin(2x+
π
6
)+
1
2
+m的圖象過(guò)點(diǎn)(
12
,0),求得m的值,可得f(x)的解析式,從而利用正弦函數(shù)的周期性求得函數(shù)的周期.令2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,k∈z,求得x的范圍,可得函數(shù)的增區(qū)間.
(2)根據(jù)x∈[0,
π
2
],利用正弦函數(shù)的定義域和值域求得f(x)的值域.
解答: 解:(1)由函數(shù)f(x)=sin(2x+
π
6
)+
1
2
+m的圖象過(guò)點(diǎn)(
12
,0),可得sinπ+
1
2
+m=0,求得m=-
1
2
,
∴f(x)=sin(2x+
π
6
),故函數(shù)的周期為
2
=π.
令2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,k∈z,求得kπ-
π
3
≤x≤kπ+
π
6
,故函數(shù)的增區(qū)間為[kπ-
π
3
,kπ+
π
6
],k∈z.
(2)∵x∈[0,
π
2
],∴2x+
π
6
∈x∈[
π
6
,
6
],
∴-
1
2
≤sin(2x+
π
6
)≤1,即f(x)的值域?yàn)閇-
1
2
,1].
點(diǎn)評(píng):本題主要考查正弦函數(shù)的周期性、單調(diào)性、定義域和值域,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)遞增;命題q:不等式ax2-ax+1>0對(duì)?x∈R恒成立,若p且q為假,p或q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

全集U={1,2,314,5,6),M={2,3,4),N={4,5},則∁U(M∪N)等于( 。
A、{1,3,5}
B、{1,5}
C、{l,6}
D、{2,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若∠A=45°,∠B=60°,BC=3
2
,則AC=(  )
A、4
3
B、3
3
C、2
3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在(-1,1)上單調(diào)遞減的奇函數(shù),且f(1-a)+f(1-2a)<0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)z1,z2對(duì)應(yīng)的點(diǎn)分別是(11,-7),(1,-2),且
z1
z2
=x+yi(其中x,y∈R,i為虛數(shù)單位),則x+y的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“f(x)>0(x∈R)恒成立”的否定是( 。
A、?x∈R,f(x)<0
B、?x∈R,f(x)≤0
C、?x∈R,f(x)<0
D、?x∈R,f(x)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
2n2-m≤0
n>m≥0
,求n-2m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)是R上的增函數(shù),且f(sinω)+f(-cosω)>f(cosω)+f(-sinω),其中ω是銳角,并且使得函數(shù)g(x)=sin(ωx+
π
4
)在(
π
2
,π)內(nèi)單調(diào)遞減,則ω的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案