【題目】如圖,在平面多邊形中,是邊長為2的正方形,為等腰梯形,為的中點,且,,現(xiàn)將梯形沿折疊,使平面平面.
(1)求證:平面;
(2)求直線與平面所成角的大。
【答案】(1)證明見解析
(2)60°
【解析】
(1)先證明、,然后證明平面即可;
(2)取的中點,連接,過點在平面內(nèi)作的垂線,以所在直線分別為軸建立如圖所示的空間直角坐標(biāo)系,然后再利用空間向量的運算求解即可.
解:(1)連接,
由已知,得,,
則四邊形為菱形,
故.
因為平面平面,平面平面,
所以平面.
又平面,
所以
又,
所以平面.
(2)取的中點,連接,
則易知平面,
過點在平面內(nèi)作的垂線,以所在直線分別為軸建立如圖所示的空間直角坐標(biāo)系,
則,
所以.
設(shè)平面的法向量為,
則即則,
取,則,
故為平面的一個法向量.
設(shè)直線與平面所成的角為,
則,
從而直線與平面所成的角為60°.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓柱內(nèi)有一個三棱錐,為圓柱的一條母線,,為下底面圓的直徑,,.
(1)在圓柱的上底面圓內(nèi)是否存在一點,使得平面?證明你的結(jié)論.
(2)設(shè)點為棱的中點,,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AB=2,AD=AP=3,點M是棱PD的中點.
(1)求二面角M—AC—D的余弦值;
(2)點N是棱PC上的點,已知直線MN與平面ABCD所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中項.?dāng)?shù)列{bn}滿足b1=1,數(shù)列{(bn+1﹣bn)an}的前n項和為2n2+n.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求曲線與曲線的公切線的方程;
(2)設(shè)函數(shù)的兩個極值點為,求證:關(guān)于的方程有唯一解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橋牌是一種高雅、文明、競技性很強的智力性游戲.近年來,在中國橋牌協(xié)會“橋牌進(jìn)校園”活動的號召下,全國各地中小學(xué)紛紛積極加入到青少年橋牌推廣的大營中.為了了解學(xué)生對橋牌這項運動的興趣,某校從高一學(xué)生中隨機抽取了200名學(xué)生進(jìn)行調(diào)查,經(jīng)統(tǒng)計男生與女生的人數(shù)之比為2:3,男生中有50人對橋牌有興趣,女生中有20人對橋牌不感興趣.
(1)完成2×2列聯(lián)表,并回答能否有的把握認(rèn)為“該校高一學(xué)生對橋牌是否感興趣與性別有關(guān)”?
感興趣 | 不感興趣 | 合計 | |
男 | 50 | —— | —— |
女 | —— | 20 | —— |
合計 | —— | —— | 200 |
(2)從被調(diào)查的對橋牌有興趣的學(xué)生中利用分層抽樣抽取6名學(xué)生,再從6名學(xué)生中抽取2名學(xué)生作為橋牌搭檔參加雙人賽.求抽到一名男生與一名女生的概率.
附:參考公式,其中.
臨界值表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,分別為橢圓的左右焦點,點為橢圓上的一動點,面積的最大值為2.
(1)求橢圓的方程;
(2)直線與橢圓的另一個交點為,點,證明:直線與直線關(guān)于軸對稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓:過點,橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,設(shè)直線與圓相切與點,與橢圓相切于點,當(dāng)為何值時,線段長度最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知曲線:(為參數(shù)),曲線:(為參數(shù)),且,點P為曲線與的公共點.
(1)求動點P的軌跡方程;
(2)在以原點O為極點,x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為,求動點P到直線l的距離的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com