【題目】某房地產(chǎn)開發(fā)商投資81萬元建一座寫字樓,第一年裝修維護費為1萬元,以后每年增加2萬元,把寫字樓出租,每年收入租金30萬元.

1)若扣除投資和各種裝修維護費,則從第幾年開始獲取純利潤?

2)若干年后開發(fā)商為了投資其他項目,有兩種處理方案:①純利潤總和最大時,以10萬元出售該樓;②年平均利潤最大時以46萬元出售該樓,問哪種方案更優(yōu)?

【答案】1)從第4年(2)選擇方案②

【解析】

1)設(shè)第年獲取利潤為萬元,根據(jù)題意,得到付出裝修費構(gòu)成一個以1為首項,2為公差的等差數(shù)列,表示出利潤,由,即可求出結(jié)果;

2)根據(jù)(1)中求出的利潤表達式,按照兩種方案,分別求出利潤,比較大小,即可得出結(jié)果.

1)設(shè)第年獲取利潤為萬元,年共收入租金萬元,

付出裝修費構(gòu)成一個以1為首項,2為公差的等差數(shù)列,

年內(nèi)共付出裝修費為,

因此利潤

解得,所以從第4年開始獲取純利潤;

2)方案①:純利潤總和,

所以經(jīng)過15年共獲利潤:144+10=154(萬元);

方案②:年內(nèi)年平均利潤,

所以(當且僅當,即時取等號),

所以9年后共獲利潤:12×9+46=154(萬元).

兩種方案獲利一樣多,而方案②時間比較短,所以選擇方案②

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求的定義域;

2)試判斷函數(shù)在區(qū)間上的單調(diào)性,并給出證明;

3)若在區(qū)間上恒取正值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了讓貧困地區(qū)的孩子們過一個溫暖的冬天,某校陽光志愿者社團組織“這個冬天不再冷”冬衣募捐活動,共有50名志愿者參與.志愿者的工作內(nèi)容有兩項:①到各班做宣傳,倡議同學們積極捐獻冬衣;②整理、打包募捐上來的衣物.每位志愿者根據(jù)自身實際情況,只參與其中的某一項工作.相關(guān)統(tǒng)計數(shù)據(jù)如下表所示:

(1)如果用分層抽樣的方法從參與兩項工作的志愿者中抽取5人,再從這5人中選2人,那么“至少有1人是參與班級宣傳的志愿者”的概率是多少?

(2)若參與班級宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數(shù),寫出隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中心接到其正東、正西、正北方向三個觀測點的報告:正西、正北兩個觀測點同時聽到了一聲巨響,正東觀測點聽到的時間比其它兩觀測點晚4.已知各觀測點到該中心的距離是1020.則該巨響發(fā)生在接報中心的 )處.(假定當時聲音傳播的速度為340,相關(guān)各點均在同一平面上

A. 西偏北方向距離 B. 東偏南方向,距離

C. 西偏北方向,距離 D. 東偏南方向,距離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐A-BCD中,AB=aAC=AD=b,BC=CD=DB=ca>0,b>0,c>0)該三棱錐的截面EFGH平行于AB、CD,分別交ADAC、BCBDE、FG、H

(1)證明:ABCD

(2)求截面四邊形EFGH面積的最大值,并說明面積取最大值時截面的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一張坐標紙上一已作出圓及點,折疊此紙片,使與圓周上某點重合,每次折疊都會留下折痕,設(shè)折痕與直線的交點為,令點的軌跡為.

(1)求軌跡的方程

(2)若直線與軌跡交于兩個不同的點,且直線與以為直徑的圓相切,的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下五個關(guān)于圓錐曲線的命題中:

①平面內(nèi)與定點A(-3,0)和B(3,0)的距離之差等于4的點的軌跡為;

②點P是拋物線上的動點,點Py軸上的射影是MA的坐標是A(3,6),則的最小值是6;

③平面內(nèi)到兩定點距離之比等于常數(shù)的點的軌跡是圓;

④若過點C(1,1)的直線交橢圓于不同的兩點A,B,且CAB的中點,則直線的方程是

⑤已知P為拋物線上一個動點,Q為圓上一個動點,那么點P到點Q的距離與點P到拋物線的準線距離之和的最小值是

其中真命題的序號是______.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學參加語、數(shù)、外三門課程的考試,設(shè)該同學語、數(shù)、外取得優(yōu)秀成績的概率分別為 , ),設(shè)該同學三門課程都取得優(yōu)秀成績的概率為,都未取得優(yōu)秀成績的概率為,且不同課程是否取得優(yōu)秀成績相互獨立.

(1)求, ;

(2)設(shè)為該同學取得優(yōu)秀成績的課程門數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年是內(nèi)蒙古自治區(qū)成立70周年.某市旅游文化局為了慶祝內(nèi)蒙古自治區(qū)成立70周年,舉辦了第十三屆成吉思汗旅游文化周.為了了解該市關(guān)注“旅游文化周”居民的年齡段分布,隨機抽取了名年齡在且關(guān)注“旅游文化周”的居民進行調(diào)查,所得結(jié)果統(tǒng)計為如圖所示的頻率分布直方圖.

年齡

單人促銷價格(單位:元)

(Ⅰ)根據(jù)頻率分布直方圖,估計該市被抽取市民的年齡的平均數(shù);

(Ⅱ)某旅行社針對“旅游文化周”開展不同年齡段的旅游促銷活動,各年齡段的促銷價位如表所示.已知該旅行社的運營成本為每人元,以頻率分布直方圖中各年齡段的頻率分布作為參團旅客的年齡頻率分布,試通過計算確定該旅行社的這一活動是否盈利;

(Ⅲ)若按照分層抽樣的方法從年齡在, 的居民中抽取人進行旅游知識推廣,并在知識推廣后再抽取人進行反饋,求進行反饋的居民中至少有人的年齡在的概率.

查看答案和解析>>

同步練習冊答案