已知F1、F2分別是橢圓的左、右焦點(diǎn),A是橢圓
x2
4
+y2
=1上一動(dòng)點(diǎn),圓C與F1A的延長線,F(xiàn)1F2的延長線以及線段AF2相切,若M(t,0)為其中一個(gè)切點(diǎn),則(  )
A、t=2
B、t>2
C、t<2
D、t與2的大小關(guān)系不確定
考點(diǎn):橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:如圖所示,切點(diǎn)分別為M,N,E.利用切線的性質(zhì)可得|F1F2|+|F2M|=|F1A|+|AE|,|AE|=|AN|,|F2M|=|F2N|.利用橢圓的定義可得|F1A|+|AN|+|NF2|=2a=4,即可解出.
解答: 解:如圖所示,切點(diǎn)分別為M,N,E.
∵|F1F2|+|F2M|=|F1A|+|AE|,|AE|=|AN|,|F2M|=|F2N|.
|F1A|+|AN|+|NF2|=2a=4,
3
+t
=4-(t-
3
)
,
解得t=2.
故選:A.
點(diǎn)評(píng):本題考查了圓的切線的性質(zhì)、橢圓的定義,考查了推理能力與計(jì)算能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2+4x
,令an=f(
n
k
) (k∈N*,n=1,2,3,…,k),則數(shù)列{an}的前k項(xiàng)和Sk=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列推理正確的是( 。
A、把a(bǔ)(b+c)與loga(x+y)類比,則有l(wèi)oga(x+y)=logax+logay
B、把a(bǔ)(b+c)與sin(x+y)類比,則有sin(x+y)=sinx+siny
C、把a(bǔ)(b+c)與ax+y類比,則有ax+y=ax+ay
D、把a(bǔ)(b+c)與a*(b+c)類比,則有a*(b+c)=a*b+a*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次人才招聘會(huì)上,有A、B兩家公司分別開出了他們的工資標(biāo)準(zhǔn):A公司允諾第一年年薪為16萬元,以后每年年薪比上一年年薪增加2萬元;B公司允諾第一年年薪為20萬元,以后每年年薪在上一年的年薪基礎(chǔ)上遞增5%,設(shè)某人年初被A、B兩家公司同時(shí)錄取,試問:
(1)若該人分別在A公司或B公司連續(xù)工作n年,則他在第n年的年薪收入分別是多少?
(2)該人打算連續(xù)在一家公司工作10年,僅從工資收入總量較多作為應(yīng)聘的標(biāo)準(zhǔn)(不計(jì)其他因素),該人應(yīng)該選擇哪家公司,為什么?(參考數(shù)據(jù):1.059≈1055,1.0510≈1.63,1.0511≈1.71)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,邊長為2的正方體ABCD-A1B1C1D1中,E、F分別是棱A1D1,B1C1的中點(diǎn).
(Ⅰ)求異面直線AE與FC所成角的余弦值;
(Ⅱ)求直線AC1與平面B1BCC1所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y的取值如表所示,若y與x線性相關(guān),且
y
=0.95x+a,則a=( 。
x0134
y2.24.34.86.7
A、2.2B、2.6
C、2.8D、2.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在幾何體P-ABCD中,ABCD為矩形,各棱所在直線共有異面直線( 。
A、4對(duì)
B、6對(duì)
C、8對(duì)
D、12對(duì)                 (

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一段長為16m的籬笆圍成一個(gè)一邊靠墻的矩形菜園,則這個(gè)矩形的長為
 
m時(shí)菜園的面積最大,最大的面積是
 
 m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-5,5]上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+4x
(1)畫出函數(shù)f(x)的大致圖象,并寫出函數(shù)的單調(diào)增區(qū)間與單調(diào)減區(qū)間.
(2)若方程f(x)+2a=0有四個(gè)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案