【題目】已知橢圓的短軸長為,離心率為.

(1)求橢圓的方程;

(2)若動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),分別過兩點(diǎn)作,垂足分別為,且記為點(diǎn)到直線的距離, 為點(diǎn)到直線的距離,為點(diǎn)到點(diǎn)的距離,試探索是否存在最大值.若存在,求出最大值;若不存在,請(qǐng)說明理由.

【答案】(1); (2)存在最大值,其最大值為.

【解析】

(1)由題意得,得a=2,c=1,即可求出橢圓方程.

(2)將直線l:y=kx+m代入曲線C的方程3x2+4y2=12中,得(4k2+3)x2+8kmx+4m2﹣12=0,由此利用根的判別式、韋達(dá)定理、點(diǎn)到直線距離公式,結(jié)合已知條件能求出(d1+d2)d3存在最大值,并能求出最大值.

(1)由題意可得,解得橢圓的方程為.

(2)將直線代入橢圓的方程中,得.

由直線與橢圓有且僅有一個(gè)公共點(diǎn)知,.

整理得,且,.

當(dāng)時(shí),設(shè)直線的傾斜角為,則,即.

,當(dāng)時(shí),,

,

當(dāng)時(shí),四邊形為矩形,此時(shí).

綜上可知,存在最大值,其最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=sin(wx+)(w>0,)的最小正周期是π,若將該函數(shù)的圖象向右平移個(gè)單位后得到的函數(shù)圖象關(guān)于直線x=對(duì)稱,則函數(shù)f(x)的解析式為(

A.f(x)=sin(2x+)B.f(x)=sin(2x-)

C.f(x)=sin(2x+)D.f(x)=sin(2x-)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓的圓心為,直線過點(diǎn)且與軸不重合,交圓,兩點(diǎn),過點(diǎn)的平行線交于點(diǎn).

(1)求的值;

(2)設(shè)點(diǎn)的軌跡為曲線,直線與曲線相交于,兩點(diǎn),與直線相交于點(diǎn),試問在橢圓上是否存在一定點(diǎn),使得,,成等差數(shù)列(其中,,分別指直線,的斜率).若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求曲線的普通方程和直線的直角坐標(biāo)方程;

2)設(shè)直線,軸的交點(diǎn)分別為,若點(diǎn)在曲線位于第一象限的圖象上運(yùn)動(dòng),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三個(gè)頂點(diǎn)都在橢圓C上,且過橢圓的左焦點(diǎn)F,O為坐標(biāo)原點(diǎn),M上,且.

1)求點(diǎn)M的軌跡方程;

2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位鼓勵(lì)員工參加健身運(yùn)動(dòng),推廣了一款手機(jī)軟件,記錄每人每天走路消耗的卡路里;軟件的測(cè)評(píng)人員從員工中隨機(jī)地選取了40人(男女各20人),記錄他們某一天消耗的卡路里,并將數(shù)據(jù)整理如下:

(1)已知某人一天的走路消耗卡路里超過180千卡被評(píng)測(cè)為“積極型”,否則為“懈怠型”,根據(jù)題中數(shù)據(jù)完成下面的列聯(lián)表,并據(jù)此判斷能否有99%以上把握認(rèn)為“評(píng)定類型”與“性別”有關(guān)?

(2)若測(cè)評(píng)人員以這40位員工每日走路所消耗的卡路里的頻率分布來估計(jì)其所有員工每日走路消耗卡路里的頻率分布,現(xiàn)在測(cè)評(píng)人員從所有員工中任選2人,其中每日走路消耗卡路里不超過120千卡的有人,超過210千卡的有人,設(shè),的分布列及數(shù)學(xué)期望.

附: ,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計(jì)算圓的周長,面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個(gè)近似數(shù)值,這個(gè)結(jié)果是當(dāng)時(shí)世界上圓周率計(jì)算的最精確數(shù)據(jù).如圖,當(dāng)分割到圓內(nèi)接正六邊形時(shí),某同學(xué)利用計(jì)算機(jī)隨機(jī)模擬法向圓內(nèi)隨機(jī)投擲點(diǎn),計(jì)算得出該點(diǎn)落在正六邊形內(nèi)的頻率為0.8269,那么通過該實(shí)驗(yàn)計(jì)算出來的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)試討論函數(shù)的極值點(diǎn)的個(gè)數(shù);

2)若,且恒成立,求a的最大值.

參考數(shù)據(jù):

1.6

1.7

1.74

1.8

10

4.953

5.474

5.697

6.050

22026

0.470

0.531

0.554

0.588

2.303

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某健身館為響應(yīng)十九屆四中全會(huì)提出的“聚焦增強(qiáng)人民體質(zhì),健全促進(jìn)全民健身制度性舉措”,提高廣大市民對(duì)全民健身運(yùn)動(dòng)的參與程度,推出了讓健身館會(huì)員參與的健身促銷活動(dòng).

1)為了解會(huì)員對(duì)促銷活動(dòng)的興趣程度,現(xiàn)從某周六參加該健身館健身活動(dòng)的會(huì)員中隨機(jī)采訪男性會(huì)員和女性會(huì)員各人,他們對(duì)于此次健身館健身促銷活動(dòng)感興趣的程度如下表所示:

感興趣

無所謂

合計(jì)

男性

女性

合計(jì)

根據(jù)以上數(shù)據(jù)能否有的把握認(rèn)為“對(duì)健身促銷活動(dòng)感興趣”與“性別”有關(guān)?

(參考公式,其中

2)在感興趣的會(huì)員中隨機(jī)抽取人對(duì)此次健身促銷活動(dòng)的滿意度進(jìn)行調(diào)查,以莖葉圖記錄了他們對(duì)此次健身促銷活動(dòng)滿意度的分?jǐn)?shù)(滿分分),如圖所示,若將此莖葉圖中滿意度分為“很滿意”(分?jǐn)?shù)不低于分)、“滿意”(分?jǐn)?shù)不低于平均分且低于分)、“基本滿意”(分?jǐn)?shù)低于平均分)三個(gè)級(jí)別.先從“滿意”和“很滿意”的會(huì)員中隨機(jī)抽取兩人參加回訪饋贈(zèng)活動(dòng),求這兩人中至少有一人是“很滿意”會(huì)員的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案