正四面體(所有面都是等邊三角形的三棱錐)相鄰兩側(cè)面所成二面角的余弦值是______.
取CD的中點(diǎn)E,連接AE,BE,如下圖所示:

設(shè)四面體的棱長為2,則AE=BE=
3

且AE⊥CD,BE⊥CD,則∠AEB即為相鄰兩側(cè)面所成二面角的平面角
在△ABE中,cos∠AEB=
AE2+BE2-AB2
2AE•BE
=
1
3

故正四面體(所有面都是等邊三角形的三棱錐)相鄰兩側(cè)面所成二面角的余弦值是
1
3

故答案為:
1
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,圓錐頂點(diǎn)為P,底面圓心為O,其母線與底面所成的角為22.5°,AB和CD是底面圓O上的兩條平行的弦,軸OP與平面PCD所成的角為60°,
(1)證明:平面PAB與平面PCD的交線平行于底面;
(2)求cos∠COD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,直四棱柱ABCD-A1B1C1D1的高為3,底面是邊長為4且∠DAB=60°的菱形,AC∩BD=O,A1C1∩B1D1=O1,則二面角O1-BC-D的大小為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方體AC1
(1)在BD上確定一點(diǎn)E,使D1E面A1C1B;
(2)求直線BB1和面A1C1B所成角的正弦值;
(3)求面A1C1B與底面ABCD所成二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

把邊長為a的正△ABC沿高線AD折成60°的二面角,這時(shí)A到邊BC的距離是( 。
A.
15
4
a
B.
6
3
a
C.
13
4
a
D.
3
2
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正三棱柱ABC-A1B1C1的每條棱長均為a,M為棱A1C1上的動(dòng)點(diǎn).
(1)當(dāng)M在何處時(shí),BC1平面MB1A,并證明之;
(2)在(1)下,求平面MB1A與平面ABC所成的二面角的大小;
(3)求B-AB1M體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正三角形ABC按中線AD折疊,使得二面角B-AD-C的大小為60°,則∠BAC的余弦值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面α⊥平面β,A∈α,B∈β,AB與平面α、β所成的角分別為
π
4
π
6
,過A、B分別作兩平面交線的垂線,垂足為A′、B′,若AB=12,求A′B′的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知幾何體A-BCED的三視圖如圖所示,其中側(cè)視圖和俯視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.求:
(1)異面直線DE與AB所成角的余弦值;
(2)二面角A-ED-B的正弦值;
(3)此幾何體的體積V的大。

查看答案和解析>>

同步練習(xí)冊答案