分析 (1)根據(jù)題意,找出滿足條件的一組函數(shù)f1(x)和f2(x)即可;
(2)根據(jù)題意,得出命題1)是真命題,說明理由即可;
命題2)是假命題,舉反例說明即可;
(3)根據(jù)題意,由f(x)=x3+x2+x+1寫出一組滿足條件的具體f1(x)和f2(x),簡(jiǎn)單說明理由即可.
解答 解:(1)根據(jù)題意,設(shè)函數(shù)f1(x)=3x為(0,+∞)上的增函數(shù),f2(x)=-2x為(0,+∞)減函數(shù),
則f(x)=3x-2x是(0,+∞)上的單調(diào)增函數(shù);
(2)命題1):若f1(x)為增函數(shù),則f(x)為增函數(shù),是真命題;
理由是:設(shè)x1<x2由y=f1(x)是區(qū)間D上的增函數(shù)可得f1(x1)<f1(x2)
①若f2(x)為單調(diào)遞增或常函數(shù),則y=F(x)是區(qū)間D上的增函數(shù)
②若函數(shù)f2(x1)>f2(x2),則由|f1(x1)-f1(x2)|>|f2(x1)-f2(x2)|可得,
-f1(x1)+f1(x2)>f2(x1)-f2(x2)
∴f1(x1)+f2(x1)<f1(x2)+f2(x2),
即f(x1)<f(x2);
綜上,函數(shù)f(x)為單調(diào)遞增函數(shù);
命題2):若f2(x)為增函數(shù),則f(x)為增函數(shù),是假命題;
如函數(shù)f1(x)=-3x為減函數(shù),f2(x)=2x為增函數(shù),
但f(x)=2x-3x不是單調(diào)遞增函數(shù);
(3)由f(x)=x3+x2+x+1,
令f1(x)=x3,為定義域R上的增函數(shù),
f2(x)=x2+x+1,且f2(x)為非常值函數(shù),
則f′(x)=3x2+2x+1=3${(x+\frac{1}{3})}^{2}$+$\frac{2}{3}$>0,
所以f(x)是定義域R上的增函數(shù).
點(diǎn)評(píng) 本題考查了函數(shù)的定義與應(yīng)用問題,也考查了函數(shù)的單調(diào)性與應(yīng)用問題,是難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $2\sqrt{2}$ | C. | $\frac{4}{3}$ | D. | $\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b>a>c | B. | a>b>c | C. | c>a>b | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com