【題目】已知實數(shù)x,y滿足x+4y=2.
(1)若|1+y|<|x|﹣2,求x的取值范圍;
(2)若x>0,y>0,求的最小值.
【答案】(1){x|x或x}(2)最小值為8
【解析】
(1)由x+4y=2,得,代入|1+y|<|x|﹣2,可得,即|6﹣x|<4|x|﹣8,然后對x分類求解,取并集得答案;
(2)由x>0,y>0,且x+4y=2,得,展開后利用基本不等式求最值.
(1)由x+4y=2,得
由|1+y|<|x|﹣2,即|6﹣x|<4|x|﹣8,
當(dāng)x<0,則6﹣x<﹣4x﹣8,∴;
當(dāng)0≤x≤6時,則6﹣x<4x﹣8,∴;
當(dāng)x>6時,則x﹣6<4x﹣8,∴x>6.
故x的取值范圍為{x|x或x};
(2)∵x>0,y>0,且x+4y=2
∴.
當(dāng)且僅當(dāng),即x=1,時,的最小值為8.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,分別是橢圓的左頂點和上頂點,為其右焦點,,且該橢圓的離心率為;
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點為橢圓上的一動點,且不與橢圓頂點重合,點為直線與軸的交點,線段的中垂線與軸交于點,若直線斜率為,直線的斜率為,且(為坐標(biāo)原點),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)和函數(shù).
(1)若曲線在處的切線過點,求實數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若不等式對于任意的恒成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構(gòu)認(rèn)為該事件在一段時間沒有發(fā)生在規(guī)模群體感染的標(biāo)志為“連續(xù)10天,每天新增疑似病例不超過7人”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是
A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知邊長為2的菱形ABCD,其中∠BAD=120°,AE∥CF,CF⊥平面ABCD,,.
(1)求證:平面BDE⊥平面BDF;
(2)求二面角D﹣EF﹣B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線E的極坐標(biāo)方程為,直線l的參數(shù)方程為(t為參數(shù)).點P為曲線E上的動點,點Q為線段OP的中點.
(1)求點Q的軌跡(曲線C)的直角坐標(biāo)方程;
(2)若直線l交曲線C于A,B兩點,點恰好為線段AB的三等分點,求直線l的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線上任意一點(異于頂點)與雙曲線兩頂點連線的斜率之積為.
(I)求雙曲線漸近線的方程;
(Ⅱ)過橢圓上任意一點P(P不在C的漸近線上)分別作平行于雙曲線兩條漸近線的直線,交兩漸近線于兩點,且,是否存在使得該橢圓的離心率為,若存在,求出橢圓方程:若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com