【題目】已知拋物線,拋物線上橫坐標(biāo)為的點到焦點的距離為.
(Ⅰ)求拋物線的方程及其準(zhǔn)線方程;
(Ⅱ)過的直線交拋物線于不同的兩點,交直線于點,直線交直線于點. 是否存在這樣的直線,使得? 若不存在,請說明理由;若存在,求出直線的方程.
【答案】(Ⅰ) ,. (Ⅱ)存在,或.
【解析】
(I)根據(jù)拋物線的定義求得拋物線的標(biāo)準(zhǔn)方程以及準(zhǔn)線飛航程.
(II)設(shè)出直線的方程,聯(lián)立直線的方程和拋物線的方程,消去后根據(jù)判別式大于零求得的取值范圍,寫出韋達定理.結(jié)合得到直線與直線的斜率相等(或者轉(zhuǎn)化為),由此列方程,解方程求得的值,也即求得直線的方程.
(Ⅰ)因為橫坐標(biāo)為的點到焦點的距離為,所以,解得,
所以
所以準(zhǔn)線方程為.
(Ⅱ)顯然直線的斜率存在,設(shè)直線的方程為,.
聯(lián)立得 消去得.
由,解得. 所以且.
由韋達定理得,.
方法一:
直線的方程為,
又,所以,所以,
因為,所以直線與直線的斜率相等
又,所以.
整理得,即,
化簡得,,即.
所以,整理得,
解得. 經(jīng)檢驗,符合題意.
所以存在這樣的直線,直線的方程為或
方法二:
因為,所以,所以.
整理得,即,
整理得.
解得,經(jīng)檢驗,符合題意.
所以存在這樣的直線,直線的方程為或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若,求曲線在點處的切線方程.
(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間.
(3)設(shè)函數(shù)若對于任意,都有成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若曲線與在點處有相同的切線,求函數(shù)的極值;
(2)若時,不等式在(為自然對數(shù)的底數(shù),)上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為,橢圓上的點到左焦點的最小值為.
(1)求橢圓的方程;
(2)已知直線與軸交于點,過點的直線與交于、兩點,點為直線上任意一點,設(shè)直線與直線交于點,記,,的斜率分別為,,,則是否存在實數(shù),使得恒成立?若是,請求出的值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若 表示從左到右依次排列的9盞燈,現(xiàn)制定開燈與關(guān)燈的規(guī)則如下:
(1)對一盞燈進行開燈或關(guān)燈一次叫做一次操作;
(2)燈在任何情況下都可以進行一次操作;對任意的,要求燈的左邊有且只有燈是開燈狀態(tài)時才可以對燈進行一次操作.如果所有燈都處于開燈狀態(tài),那么要把燈關(guān)閉最少需要_____次操作;如果除燈外,其余8盞燈都處于開燈狀態(tài),那么要使所有燈都開著最少需要_____次操作.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)界的震動.在1859年,德國數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素數(shù)個數(shù)》的論文并提出了一個命題,也就是著名的黎曼猜想.在此之前,著名數(shù)學(xué)家歐拉也曾研究過這個問題,并得到小于數(shù)字的素數(shù)個數(shù)大約可以表示為的結(jié)論.若根據(jù)歐拉得出的結(jié)論,估計10000以內(nèi)的素數(shù)的個數(shù)為(素數(shù)即質(zhì)數(shù),,計算結(jié)果取整數(shù))
A. 1089 B. 1086 C. 434 D. 145
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,橢圓:經(jīng)過點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點是橢圓上的任意一點,射線與橢圓交于點,過點的直線與橢圓有且只有一個公共點,直線與橢圓交于,兩個相異點,證明:面積為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com