如圖,在多面體中,四邊形是正方形,,,,.

1)求證:面;

2)求證:.

 

【答案】

1)證明見(jiàn)解析;2見(jiàn)解析.

【解析】

試題分析:1要證明面面垂直,需先證線面垂直.

利用四邊形為正方形,證得,即 ,

再根據(jù)

得證.

2注意利用“平行關(guān)系的傳遞性”.

通過(guò)的中點(diǎn),連結(jié),

應(yīng)用三角形中位線定理得出四邊形為平行四邊形,即

從而得到

類似地,由

,得出.

試題解析:證明:(1四邊形為正方形, ,

2

4

,

, 6

2)取的中點(diǎn),連結(jié),

,,

四邊形為平行四邊形

8

,,

四邊形為平行四邊形,且

是正方形,,且

為平行四邊形,,,

10

, 12

考點(diǎn):空間的平行關(guān)系,三角形中位線定理,平行四邊形的性質(zhì).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)多面體上,位于同一條棱兩端的頂點(diǎn)稱為相鄰的,如圖,正方體的一個(gè)頂點(diǎn)A在平面α內(nèi),其余頂點(diǎn)在α的同側(cè),正方體上與頂點(diǎn)A相鄰的三個(gè)頂點(diǎn)到α的距離分別為1,2和4,P是正方體的其余四個(gè)頂點(diǎn)中的一個(gè),則P到平面α的距離可能是:①3;②4; ③5;④6;⑤7.以上結(jié)論正確的為
 
.(寫出所有正確結(jié)論的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=2,AB=2DC,AB∥DC,∠BCD=90°.
(Ⅰ)求證:PC⊥BC;
(Ⅱ)求多面體A-PBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年內(nèi)蒙古高三上學(xué)期期末文科數(shù)學(xué)試卷 題型:解答題

如圖,在四棱錐中,,,,.

(Ⅰ)求證:;

(Ⅱ)求多面體的體積.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=2,AB=2DC,AB∥DC,∠BCD=90°.
(Ⅰ)求證:PC⊥BC;
(Ⅱ)求多面體A-PBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年內(nèi)蒙古包頭33中高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=2,AB=2DC,AB∥DC,∠BCD=90°.
(Ⅰ)求證:PC⊥BC;
(Ⅱ)求多面體A-PBC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案