【題目】在直角坐標(biāo)系xOy中,圓C1和C2的參數(shù)方程分別是 (φ為參數(shù))和 (φ為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求圓C1和C2的極坐標(biāo)方程;
(2)射線OM:θ=a與圓C1的交點(diǎn)為O、P,與圓C2的交點(diǎn)為O、Q,求|OP||OQ|的最大值.
【答案】
(1)解:圓C1 (φ為參數(shù)),
轉(zhuǎn)化成直角坐標(biāo)方程為:(x﹣2)2+y2=4
即:x2+y2﹣4x=0
轉(zhuǎn)化成極坐標(biāo)方程為:ρ2=4ρcosθ
即:ρ=4cosθ
圓C2 (φ為參數(shù)),
轉(zhuǎn)化成直角坐標(biāo)方程為:x2+(y﹣1)2=1
即:x2+y2﹣2y=0
轉(zhuǎn)化成極坐標(biāo)方程為:ρ2=2ρsinθ
即:ρ=2sinθ
(2)解:射線OM:θ=α與圓C1的交點(diǎn)為O、P,與圓C2的交點(diǎn)為O、Q
則:P(2+2cosα,2sinα),Q(cosα,1+sinα)
則:|OP|= = ,
|OQ|= =
則:|OP||OQ|=
=
設(shè)sinα+cosα=t( )
則:
則關(guān)系式轉(zhuǎn)化為:
4 =
由于:
所以:(|OP||OQ|)max=
【解析】(1)首先把兩圓的參數(shù)方程轉(zhuǎn)化成直角坐標(biāo)方程,再把直角坐標(biāo)方程為轉(zhuǎn)化成極坐標(biāo)方程.(2)根據(jù)圓的坐標(biāo)形式.利用兩點(diǎn)間的距離公式,再利用換元法進(jìn)一步求出最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓的半徑為2,點(diǎn)是圓的六等分點(diǎn)中的五個(gè)點(diǎn).
(1)從中隨機(jī)取三點(diǎn)構(gòu)成三角形,求這三點(diǎn)構(gòu)成的三角形是直角三角形的概率;
(2)在圓上隨機(jī)取一點(diǎn),求的面積大于的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)= 為R的單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是( )
A.(0,+∞)
B.[﹣1,0)
C.(﹣2,0)
D.(﹣∞,﹣2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】提高過(guò)江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過(guò)20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=xv(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱柱中, 平面, , , , , 為的中點(diǎn).
(Ⅰ)求四棱錐的體積;
(Ⅱ)設(shè)點(diǎn)在線段上,且直線與平面所成角的正弦值為,求線段的長(zhǎng)度;
(Ⅲ)判斷線段上是否存在一點(diǎn),使得?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某糧庫(kù)擬建一個(gè)儲(chǔ)糧倉(cāng)如圖所示,其下部是高為2的圓柱,上部是母線長(zhǎng)為2的圓錐,現(xiàn)要設(shè)計(jì)其底面半徑和上部圓錐的高,若設(shè)圓錐的高為,儲(chǔ)糧倉(cāng)的體積為.
(1)求關(guān)于的函數(shù)關(guān)系式;(圓周率用表示)
(2)求為何值時(shí),儲(chǔ)糧倉(cāng)的體積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從2名男生和2名女生中任意選擇兩人在星期六、星期日參加某公益活動(dòng),每天一人,則星期六安排一名男生、星期日安排一名女生的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:直線,一個(gè)圓與軸正半軸與軸正半軸都相切,且圓心到直線的距離為.
()求圓的方程.
()是直線上的動(dòng)點(diǎn), , 是圓的兩條切線, , 分別為切點(diǎn),求四邊形的面積的最小值.
()圓與軸交點(diǎn)記作,過(guò)作一直線與圓交于, 兩點(diǎn), 中點(diǎn)為,求最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com