【題目】某同學(xué)研究曲線的性質(zhì),得到如下結(jié)論:①的取值范圍是;②曲線是軸對(duì)稱(chēng)圖形;③曲線上的點(diǎn)到坐標(biāo)原點(diǎn)的距離的最小值為. 其中正確的結(jié)論序號(hào)為(

A.①②B.①③C.②③D.①②③

【答案】D

【解析】

把方程變形可得的取值范圍,在方程中互換可判斷對(duì)稱(chēng)性,利用公式可求得曲線上的點(diǎn)到坐標(biāo)原點(diǎn)的距離的最小值,從而得到結(jié)果.

因?yàn)榍的方程,所以,

式子中的范圍為,對(duì)應(yīng)的的范圍為,所以命題正確;

中,令,方程不變,

所以曲線的圖象關(guān)于直線對(duì)稱(chēng),所以命題正確;

設(shè)曲線上點(diǎn)的坐標(biāo)為

因?yàn)?/span>,

所以,即,

所以,即,

所以,

,所以,所以

,當(dāng)且僅當(dāng)時(shí)取等號(hào),

所以曲線上的點(diǎn)到原點(diǎn)的距離的最小值是,所以命題正確;

所以正確命題的序號(hào)是,

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)的極值;

(2)問(wèn):是否存在實(shí)數(shù),使得有兩個(gè)相異零點(diǎn)?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,底面為矩形,側(cè)面為梯形,,.

1)求證:;

2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)小組到進(jìn)行社會(huì)實(shí)踐調(diào)查,了解到某公司為了實(shí)現(xiàn)1000萬(wàn)元利潤(rùn)目標(biāo),準(zhǔn)備制定激勵(lì)銷(xiāo)售人員的獎(jiǎng)勵(lì)方案:在銷(xiāo)售利潤(rùn)超過(guò)10萬(wàn)元時(shí),按銷(xiāo)售利潤(rùn)進(jìn)行獎(jiǎng)勵(lì),且獎(jiǎng)金y(單位:萬(wàn)元)隨銷(xiāo)售利潤(rùn)x(單位:萬(wàn)元)的增加而增加,但獎(jiǎng)金總數(shù)不超過(guò)5萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)利潤(rùn)的25%.同學(xué)們利用函數(shù)知識(shí),設(shè)計(jì)了如下的函數(shù)模型,其中符合公司要求的是(參考數(shù)據(jù):,( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖所示,某窯洞窗口形狀上部是圓弧,下部是一個(gè)矩形,圓弧所在圓的圓心為O,經(jīng)測(cè)量米,米,,現(xiàn)根據(jù)需要把此窯洞窗口形狀改造為矩形,其中E,F在邊上,G,H在圓弧.設(shè),矩形的面積為S.

1)求矩形的面積S關(guān)于變量的函數(shù)關(guān)系式;

2)求為何值時(shí),矩形的面積S最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),函數(shù)的導(dǎo)函數(shù).

1)若,都有成立(其中),求的值;

2)證明:當(dāng)時(shí),;

3)設(shè)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求函數(shù)在點(diǎn)處的切線方程;

2)求函數(shù)上的值域;

3)若存在,使得成立,求的最大值.(其中自然常數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求時(shí)的最值;

2)若時(shí),都有,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題p:x∈R,ax2﹣2ax+1>0,命題q:指數(shù)函數(shù)f(x)=ax(a>0且a≠1)為減函數(shù),則P是q的( 。

A.充分不必要條件B.必要不充分條件

C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案