分析 (1)由$\overrightarrow{a}$∥$\overrightarrow$,得2sinθ-cosθ=0,由此利用同角三角函數(shù)關(guān)系式能求出結(jié)果.
(2)推導出sin(θ+φ)=$\frac{1}{3}$,求出sinφ=sin(θ+φ-θ),由此利用cos(φ+$\frac{π}{2}$)=-sinϕ,能求出結(jié)果.
解答 (本小題滿分12分)
解:(1)∵$\overrightarrow{a}$∥$\overrightarrow$,∴2sinθ-cosθ=0.①…(2分)
又sin2θ+cos2θ=1.②…(4分)
則由①②及$θ∈(0,\frac{π}{2})$,可解得$sinθ=\frac{{\sqrt{5}}}{5},cosθ=\frac{{2\sqrt{5}}}{5}$.…(6分)
(2)由cos(θ+φ)=-$\frac{2\sqrt{2}}{3}$(0<φ<$\frac{π}{2}$),得sin(θ+φ)=$\frac{1}{3}$,…(7分)
sinφ=sin(θ+φ-θ)
=sin(θ+φ)cosθ-cos(θ+φ)sinθ
=$\frac{1}{3}×\frac{2\sqrt{5}}{5}-(-\frac{2\sqrt{2}}{3})×\frac{\sqrt{5}}{5}$
=$\frac{2\sqrt{5}+2\sqrt{10}}{15}$,…(10分)
∴cos(φ+$\frac{π}{2}$)=-sinϕ=$-\frac{{2\sqrt{5}+2\sqrt{10}}}{15}$…(12分)
點評 本題考查三角函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意平面向量平行的性質(zhì)、同角三角函數(shù)關(guān)系式、正弦加法定理、誘導公式的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{6}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{13}+2$ | B. | $2+\sqrt{3}i$ | C. | $\sqrt{13}+\sqrt{2}$ | D. | $\sqrt{13}+4$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com