【題目】設(shè)實(shí)數(shù)滿(mǎn)足不等式函數(shù)無(wú)極值點(diǎn).
(1)若“”為假命題,“”為真命題,求實(shí)數(shù)的取值范圍;
(2)已知“”為真命題,并記為,且,若是的必要不充分條件,求正整數(shù)的值.
【答案】(1);(2).
【解析】
試題分析:(1)借助題設(shè)條件運(yùn)用復(fù)合命題的真假關(guān)系建立不等式求解;(2)借助命題的真假和充分必要條件的定義建立不等式求解.
試題解析:
由,得,即
∵函數(shù)無(wú)極值點(diǎn),∴恒成立,得,解得,
即
(1)∵“”為假命題,“”為真命題,∴與只有一個(gè)命題是真命題,
若為真命題,為假命題,則;
若為真命師,為假命題,則,
于是,實(shí)數(shù)的取值范圍為
(2)∵“”真命題,∴,
又,
∴,
∴,
即,從而.
∵是的必要不充分條件,即是的充分不必要條件,
∴,解得,∵,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】①您所購(gòu)買(mǎi)的是名牌產(chǎn)品,您認(rèn)為該產(chǎn)品的知名度
A.很高 B.—般 C.很低
②你們家有幾個(gè)孩子?
③你們班有幾個(gè)高個(gè)子同學(xué)? .
④你認(rèn)為數(shù)學(xué)學(xué)習(xí)
A.較困難 B.較容易 C.沒(méi)感覺(jué)
以上問(wèn)題符合調(diào)查問(wèn)卷要求的是( )
A.① B.② C.③D.④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(2)若在區(qū)間上不存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中,A(1, 3),AB、AC邊上的中線(xiàn)所在直線(xiàn)方程分別為 和,求各邊所在直線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面,,,為中點(diǎn).
(1)求證:平面;
(2)求二面角的正弦值;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓M過(guò)兩點(diǎn)A(1,﹣1),B(﹣1,1),且圓心M在直線(xiàn)x+y﹣2=0上.
(1)求圓M的方程.
(2)設(shè)P是直線(xiàn)3x+4y+8=0上的動(dòng)點(diǎn),PC、PD是圓M的兩條切線(xiàn),C、D為切點(diǎn),求四邊形PCMD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的對(duì)稱(chēng)軸為,.
(1)求函數(shù)的最小值及取得最小值時(shí)的值;
(2)試確定的取值范圍,使至少有一個(gè)實(shí)根;
(3)當(dāng)時(shí),,對(duì)任意有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sinxcosx-cos2x.
(1)求f(0)的值及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題p:關(guān)于x的不等式x2+2ax+4>0對(duì)于一切x∈R恒成立,命題q:x∈11,2],x2-a≥0,若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com