【題目】[選修4-5:不等式選講]
已知x,y∈R.
(1)若x,y滿足 , ,求證: ;
(2)求證:x4+16y4≥2x3y+8xy3

【答案】
(1)證明:利用絕對值不等式的性質得:

|x|= [|2(x﹣3y)+3(x+2y)|]≤ [|2(x﹣3y)|+|3(x+2y)|]< (2× +3× )= ;


(2)證明:因為x4+16y4﹣(2x3y+8xy3)=x4﹣2x3y+16y4﹣8xy3=x3(x﹣2y)+8y3(2y﹣x)

=(x﹣2y)(x3﹣8y3)=(x﹣2y)(x﹣2y)(x2+2xy+4y2

=(x﹣2y)2[(x+y)2+3y2]≥0,

∴x4+16y4≥2x3y+8xy3


【解析】(1)|x|= [|2(x﹣3y)+3(x+2y)|]≤ [|2(x﹣3y)|+|3(x+2y)|]< (2× +3× )= ;(2)x4+16y4﹣(2x3y+8xy3)=x4﹣2x3y+16y4﹣8xy3=x3(x﹣2y)+8y3(2y﹣x)=(x﹣2y)2[(x+y)2+3y2]≥0即可.
【考點精析】本題主要考查了不等式的證明的相關知識點,需要掌握不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構造法,函數(shù)單調性法,數(shù)學歸納法等才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=AC=2,BCcos(π﹣A)=1,則cosA的值所在區(qū)間為(
A.(﹣0.4,﹣0.3)
B.(﹣0.2,﹣0.1)
C.(﹣0.3,﹣0.2)
D.(0.4,0.5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,a3=9,且an=an1+λn﹣1(n≥2).
( I)求λ的值及數(shù)列{an}的通項公式;
( II)設 ,且數(shù)列{bn}的前n項和為Sn , 求S2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-5:不等式選講]
設函數(shù)f(x)=|x+ |+|x﹣2m|(m>0).
(1)求證:f(x)≥8恒成立;
(2)求使得不等式f(1)>10成立的實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準x(噸),一位居民的月用水量不超過x的部分按平價收費,超過x的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為X,求X的分布列與數(shù)學期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準x(噸),估計x的值(精確到0.01),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過正方體ABCD﹣A1B1C1D1的頂點A1在空間作直線l,使l與直線AC和BC1所成的角都等于 ,則這樣的直線l共可以作出(
A.1條
B.2條
C.3條
D.4條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知 =(2λsinx,sinx+cosx), =( cosx,λ(sinx﹣cosx))(λ>0),函數(shù)f(x)= 的最大值為2.
(1)求函數(shù)f(x)的單調遞減區(qū)間;
(2)在△ABC中,內角A,B,C的對邊分別為a,b,c,cosA= ,若f(A)﹣m>0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,PD⊥平面ABCD,E為PB上的點,且2BE=EP.
(1)證明:AC⊥DE;
(2)若PC= BC,求二面角E﹣AC﹣P的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x2﹣ax﹣lnx,a∈R.
(Ⅰ)若函數(shù)f(x)的圖象在x=1處的切線斜率為1,求實數(shù)a的值;
(Ⅱ)當a≥﹣1時,記f(x)的極小值為H,求H的最大值.

查看答案和解析>>

同步練習冊答案