精英家教網 > 高中數學 > 題目詳情
橢圓C以拋物線的焦點為右焦點,且經過點A(2,3).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若分別為橢圓的左右焦點,求的角平分線所在直線的方程.
(Ⅰ);(II)y=2x-1。

試題分析:(Ⅰ)設橢圓C的方程為
易知拋物線的焦點為(2,0),所以橢圓的左右焦點分別為(-2,0),(2,0)
根據橢圓的定義
所以,所以
所以橢圓C的方程為
(II)由(Ⅰ)知(-2,0),(2,0)
所以直線的方程為,直線的方程為 
所以的角平分線所在直線的斜率為正數。
設(x,y)為的角平分線上任意一點,則有
由斜率為正數,整理得y=2x-1,這就是所求的角平分線所在直線的方程.
點評:中檔題,求橢圓的標準方程,主要運用了橢圓的幾何性質,注意明確焦點軸和a,b,c的關系。曲線關系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。本題(2)出發(fā)利用角的平分線的性質,求得直線方程。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,橢圓的頂點為,焦點為.

(Ⅰ)求橢圓C的方程;
(Ⅱ)設n 為過原點的直線,是與n垂直相交于P點,與橢圓相交于A, B兩點的直線,.是否存在上述直線使成立?若存在,求出直線的方程;并說出;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

關于直線的對稱點的坐標為      ;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數,)的圖象恒過定點,橢圓
)的左,右焦點分別為,直線經過點且與⊙相切.
(1)求直線的方程;
(2)若直線經過點并與橢圓軸上方的交點為,且,求內切圓的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若橢圓mx2 + ny2 = 1與直線x+y-1=0交于A、B兩點,過原點與線段AB中點的直線的斜率為,則=(  )
A.     B.        C.      D. 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在橢圓上找一點,使這一點到直線的距離為最小,并求最小值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知直線l過雙曲線C的一個焦點,且與C的對稱軸垂直,lC交于A、B兩點,C的實軸長的2倍,則雙曲線C的離心率為(    )
A.B.2C.D.3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的左右焦點分別為、,離心率,直線經過左焦點.
(1)求橢圓的方程;
(2)若為橢圓上的點,求的范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

拋物線的準線與軸交于,焦點為,若橢圓、為焦點、且離心率為.                   
(1)當時,求橢圓的方程;
(2)若拋物線與直線軸所圍成的圖形的面積為,求拋物線和直線的方程.

查看答案和解析>>

同步練習冊答案