【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動,在,實驗地分別用甲、乙方法培訓(xùn)該品種花苗.為觀測其生長情況,分別在實驗地隨機抽取各50株,對每株進(jìn)行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80及以上的花苗為優(yōu)質(zhì)花苗.
(1)求圖中的值;
(2)填寫下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計 |
附:下面的臨界值表僅供參考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中.)
【答案】(1);(2)列聯(lián)表見解析,有的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān)系.
【解析】
(1)根據(jù)頻率分布直方圖中矩形面積之和為1即可求解;
(2)根據(jù)題中“分別在實驗地隨機抽取各50株”判斷即可補全數(shù)據(jù),再根據(jù)二聯(lián)表算出,并結(jié)合與的關(guān)系判斷即可
(1),解得 ;
(2) 結(jié)合(1)與頻率分布直方圖,優(yōu)質(zhì)花苗的頻率為,則樣本種,優(yōu)質(zhì)花苗的顆數(shù)為60棵,列聯(lián)表如下表所示:
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計 | |
甲培育法 | 20 | 30 | 50 |
乙培育法 | 40 | 10 | 50 |
合計 | 60 | 40 | 100 |
可得.
所以,有的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過雙曲線的右焦點且垂直于軸的直線與雙曲線交于兩點,為虛軸的一個端點,且為鈍角三角形,則此雙曲線離心率的取值范圍為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于充分必要條件的判斷中,錯誤的是( )
A.“”是“”的充分條件
B.“”是“”的必要條件
C.“”是“”的充要條件
D.“,”是“”的非充分非必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的最大值為,最小值為,則( )
A.存在實數(shù),使
B.存在實數(shù),使
C.對任意實數(shù),有
D.對任意實數(shù),有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的偶函數(shù),滿足,當(dāng)時,,若,,,則,,的大小關(guān)系為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點為,經(jīng)過軸正半軸上點的直線交于不同的兩點和.
(1)若,求點的坐標(biāo);
(2)若,求證:原點總在以線段為直徑的圓的內(nèi)部;
(3)若,且直線∥,與有且只有一個公共點,問:△的面積是否存在最小值?若存在,求出最小值,并求出點的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省普通高中學(xué)業(yè)水平考試成績按人數(shù)所占比例依次由高到低分為,,,,五個等級,等級,等級,等級,,等級共.其中等級為不合格,原則上比例不超過.該省某校高二年級學(xué)生都參加學(xué)業(yè)水平考試,先從中隨機抽取了部分學(xué)生的考試成績進(jìn)行統(tǒng)計,統(tǒng)計結(jié)果如圖所示.若該校高二年級共有1000名學(xué)生,則估計該年級拿到級及以上級別的學(xué)生人數(shù)有( )
A.45人B.660人C.880人D.900人
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)求的最小正周期;
(2)若將函數(shù)圖像向左平移個單位后得到函數(shù)的圖像,求函數(shù)在區(qū)間上的值域;
(3)銳角三角形中,若,,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)求函數(shù)的極值;
(2)問:是否存在實數(shù),使得有兩個相異零點?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com