【題目】下列說法正確的是( )
A.x,y∈R,若x+y≠0,則x≠1且y≠﹣1
B.命題“x∈R,使得x2+2x+3<0”的否定是“x∈R,都有x2+2x+3>0”
C.a∈R,“ <1”是“a>1”的必要不充分條件
D.“若am2<bm2 , 則a<b”的逆命題為真命題
【答案】C
【解析】解:對于A,x,y∈R,若x+y≠0,則x≠1且y≠﹣1的逆否命題為:x,y∈R,若x=1或y=﹣1,則x+y=0,為假命題,故①錯(cuò)誤;
對于B,命題“x∈R,使得x2+2x+3<0”的否定是“x∈R,都有x2+2x+3≥0”,故B錯(cuò)誤;
對于C,a∈R,“ <1”“a<0,或a>1”是“a>1”的必要不充分條件,故C正確;
對于B,“若am2<bm2,則a<b”的逆命題為“若a<b,則am2<bm2”為假命題,故D錯(cuò)誤;,
故選:C
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識(shí),掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}滿足a1=1,且an+1﹣an=n+1(n∈N*),則數(shù)列{ }的前10項(xiàng)的和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩位同學(xué)進(jìn)行乒乓球比賽,甲獲勝的概率為0.4,現(xiàn)采用隨機(jī)模擬的方法估計(jì)這兩位同學(xué)打3局比賽甲恰好獲勝2局的概率:先利用計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),制定1,2,3,4表示甲獲勝,用5,6,7,8,9,0表示乙獲勝,再以每三個(gè)隨機(jī)數(shù)為一組,代表3局比賽的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了30組隨機(jī)數(shù)
102 231 146 027 590 763 245 207 310 386 350 481 337 286 139
579 684 487 370 175 772 235 246 487 569 047 008 341 287 114
據(jù)此估計(jì),這兩位同學(xué)打3局比賽甲恰好獲勝2局的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓M: + =1(a>0)的一個(gè)焦點(diǎn)為F(﹣1,0),左右頂點(diǎn)分別為A,B,經(jīng)過點(diǎn)F的直線l與橢圓M交于C,D兩點(diǎn).
(Ⅰ)求橢圓方程;
(Ⅱ)記△ABD與△ABC的面積分別為S1和S2 , 求|S1﹣S2|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y= +lg(﹣x2+4x﹣3)的定義域?yàn)镸,
(1)求M;
(2)當(dāng)x∈M時(shí),求函數(shù)f(x)=a2x+2+34x(a<﹣3)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知α∈(0, ),β∈(0, ),且滿足 cos2 + sin2 = + ,sin(2017π﹣α)= cos( π﹣β),則α+β= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為得到函數(shù)y=sin2x﹣cos2x的圖象,可由函數(shù)y= sin2x的圖象( )
A.向左平移 個(gè)單位
B.向右平移 個(gè)單位
C.向左平移 個(gè)單位
D.向右平移 個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知sin2 .
(Ⅰ) 求角A的大;
(Ⅱ) 若b+c=2,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com