【題目】已知 <β<α< ,cos(α﹣β)= ,sin(α+β)=﹣ ,則sin2α的值

【答案】﹣
【解析】解:∵ <β<α< , ∴0<α﹣β< ,π<α+β<
又cos(α﹣β)= ,sin(α+β)=﹣ ,
∴sin(α﹣β)= ,cos(α+β)=﹣ ,
∴sin2α=sin[(α﹣β)+(α+β)]
=sin(α﹣β)cos(α+β)+cos(α﹣β)sin(α+β)
= ×(﹣ )+ ×(﹣
=﹣
所以答案是:﹣
【考點(diǎn)精析】本題主要考查了兩角和與差的余弦公式和兩角和與差的正弦公式的相關(guān)知識(shí)點(diǎn),需要掌握兩角和與差的余弦公式:;兩角和與差的正弦公式:才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)在其定義區(qū)間[a,b]上滿足①f(x)>0;②f′(x)<0;③對(duì)任意的x1 , x2∈[a,b],式子 恒成立.記S1= f(x)dx,S2= (b﹣a),S3=f(b)(b﹣a),則S1 , S2 , S3的大小關(guān)系為 . (按由小到大的順序)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx﹣x2+1.

(Ⅰ)若曲線y=f(x)在x=1處的切線方程為4x﹣y+b=0,求實(shí)數(shù)ab的值;

(Ⅱ)討論函數(shù)f(x)的單調(diào)性;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Acos( + ),x∈R,且f( )=
(1)求A的值;
(2)設(shè)α,β∈[0, ],f(4α+ π)=﹣ ,f(4β﹣ π)= ,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若m,n∈[﹣1,1],m+n≠0 時(shí),有
(1)求證:f(x)在[﹣1,1]上為增函數(shù);
(2)求不等式 的解集;
(3)若 對(duì)所有 恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)橢圓)的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上, , , 的面積為.

(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)是否存在圓心在軸上的圓,使圓在軸的上方與橢圓

有兩個(gè)交點(diǎn),且圓在這兩個(gè)交點(diǎn)處的兩條切線相互垂直并分別過不同的焦點(diǎn)?若存在,求圓的方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在( n的展開式中,第6項(xiàng)為常數(shù)項(xiàng).
(1)求n;
(2)求含x2項(xiàng)的系數(shù);
(3)求展開式中所有的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中共有8個(gè)球,其中3個(gè)紅球、2個(gè)白球、3個(gè)黑球.若從袋中任取3個(gè)球,則所取3個(gè)球中至多有1個(gè)紅球的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+2x+c(a、c∈N*)滿足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若對(duì)任意的實(shí)數(shù)x∈[ , ],都有f(x)﹣2mx≤1成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案