(本題滿分12分)已知函數(shù)(x>0).(1)若b≥,求證≥(e是自然對(duì)數(shù)的底數(shù));(2)設(shè)F(x)=+(x≥1,a∈R),試問(wèn)函數(shù)F(x)是否存在最小值?若存在,求出最小值;若不存在,請(qǐng)說(shuō)明理由.
(Ⅰ) 見(jiàn)解析 (Ⅱ) 當(dāng)a≥0時(shí),最小值為a-1,當(dāng)a<0時(shí),最小值為.
由已知有,令,即,解得.
當(dāng)時(shí),≥0,即f(x)在上是增函數(shù);當(dāng) 時(shí),<0,即f (x)在上是減函數(shù).………4分于是由 b≥,有≥,即blnb≥.整理得 lnbbe≥,∴ ≥. 6分
(2),令=0,即lnx+a=0,解得x=.
當(dāng)≤1,即a≥0時(shí),F(x)在上是增函數(shù),∴ ;
當(dāng)>1,即a<0時(shí),F(x)在[1,]上是減函數(shù),在上是增函數(shù),
∴ .
即F(x)存在最小值,當(dāng)a≥0時(shí),最小值為a-1,當(dāng)a<0時(shí),最小值為.
……………………………………………………………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:安徽省合肥一中、六中、一六八中學(xué)2010-2011學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)(理 題型:解答題
(本題滿分12分)已知△的三個(gè)內(nèi)角、、所對(duì)的邊分別為、、.,且.(1)求的大。唬2)若.求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011屆本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題
(本題滿分12分)已知各項(xiàng)均為正數(shù)的數(shù)列,
的等比中項(xiàng)。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為T(mén)n,求Tn。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省揭陽(yáng)市高三調(diào)研檢測(cè)數(shù)學(xué)理卷 題型:解答題
(本題滿分12分)
已知橢圓:的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,,是它的左,右焦點(diǎn).
(1)若,且,,求、的坐標(biāo);
(2)在(1)的條件下,過(guò)動(dòng)點(diǎn)作以為圓心、以1為半徑的圓的切線(是切點(diǎn)),且使,求動(dòng)點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年遼寧省高二上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分12分)已知橢圓的長(zhǎng)軸,短軸端點(diǎn)分別是A,B,從橢圓上一點(diǎn)M向x軸作垂線,恰好通過(guò)橢圓的左焦點(diǎn),向量與是共線向量
(1)求橢圓的離心率
(2)設(shè)Q是橢圓上任意一點(diǎn),分別是左右焦點(diǎn),求的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com