【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,取與直角坐標(biāo)系相同的長(zhǎng)度單位建立極坐標(biāo)系.曲線的參數(shù)方程為,(為參數(shù)),曲線的極坐標(biāo)方程為,且交單的橫坐標(biāo)為.

1)求曲線的普通方程.

2)設(shè)為曲線軸的兩個(gè)交點(diǎn),為曲線上不同于的任意一點(diǎn),若直線分別與交于兩點(diǎn),求證:為定值.

【答案】1;(2)證明見解析.

【解析】

1)由消參后可得含參的普通方程,把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,由兩曲線相交的交點(diǎn)橫坐標(biāo)求得,從而所求方程;

2)不妨設(shè)為橢圓上頂點(diǎn)即,用參數(shù)方程設(shè)出點(diǎn)坐標(biāo),計(jì)算出的橫坐標(biāo),計(jì)算即得.

1)曲線的普通方程為,曲線的直角坐標(biāo)方程為,可知它們的交點(diǎn)為,代入曲線的普通方程可求得,所以曲線的普通方程為.

2)由(1)可知曲線為橢圓,不妨設(shè)為橢圓的上頂點(diǎn),則的坐標(biāo)為.,

設(shè),,,因此直線分別與軸交于兩點(diǎn),

,即,∴,

,因此為定值4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的直角頂點(diǎn)軸上,點(diǎn)為斜邊的中點(diǎn),且平行于軸.

(Ⅰ)求點(diǎn)的軌跡方程;

(Ⅱ)設(shè)點(diǎn)的軌跡為曲線,直線的另一個(gè)交點(diǎn)為.以為直徑的圓交軸于即此圓的圓心為,的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有9只球,其中標(biāo)有數(shù)字1,2,3,4的小球各2個(gè),標(biāo)數(shù)字5的小球有1個(gè).從袋中任取3個(gè)小球,每個(gè)小球被取出的可能性都相等,用表示取出的3個(gè)小球上的最大數(shù)字.

(1)求取出的3個(gè)小球上的數(shù)字互不相同的概率;

(2)求隨機(jī)變量的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,

(1)求證:平面ABCD;

(2),點(diǎn)FEC上,且滿足EF=2FC,求二面角FADC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求不等式的解集;

2)若的圖像與軸圍成直角三角形,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為

1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;

2)設(shè)點(diǎn),直線l與曲線C交于不同的兩點(diǎn)A、B,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知函數(shù)

(1)討論函數(shù)單調(diào)性;

(2)當(dāng)時(shí),成立,求實(shí)數(shù)取值范圍;

(3)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,曲線為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長(zhǎng)度的極坐標(biāo)系中,曲線.

(1)求曲線的普通方程以及曲線的平面直角坐標(biāo)方程;

(2)若曲線上恰好存在三個(gè)不同的點(diǎn)到曲線的距離相等,求這三個(gè)點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地1~10歲男童年齡(單位:歲)與身高的中位數(shù) (單位,如表所示:

/歲

1

2

3

4

5

6

7

8

9

10

76.5

88.5

96.8

104.1

111.3

117.7

124

130

135.4

140.2

對(duì)上表的數(shù)據(jù)作初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

112.45

82.50

3947.71

566.85

(1)求關(guān)于的線性回歸方程(回歸方程系數(shù)精確到0.01);

(2)某同學(xué)認(rèn)為方程更適合作為關(guān)于的回歸方程模型,他求得的回歸方程是.經(jīng)調(diào)查,該地11歲男童身高的中位數(shù)為,與(1)中的線性回歸方程比較,哪個(gè)回歸方程的擬合效果更好?

(3)從6歲~10歲男童中每個(gè)年齡階段各挑選一位男童參加表演(假設(shè)該年齡段身高的中位數(shù)就是該男童的身高).再?gòu)倪@5位男童中任挑選兩人表演“二重唱”,則“二重唱”男童身高滿足的概率是多少?

參考公式:,

查看答案和解析>>

同步練習(xí)冊(cè)答案