已知
(1)求的單調(diào)增區(qū)間
(2)若內(nèi)單調(diào)遞增,求的取值范圍.
(1)時(shí)的單調(diào)增區(qū)間為;時(shí)的單調(diào)增區(qū)間為.(2)

試題分析:本題主要考察函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系 ,通過(guò)求導(dǎo)研究函數(shù)的單調(diào)性是導(dǎo)數(shù)的基本應(yīng)用.
試題解析:(1)∵,,令 時(shí), 的單調(diào)增區(qū)間為;時(shí)的單調(diào)增區(qū)間為;
(2)由(1)知,,令 時(shí),內(nèi)單調(diào)遞增;時(shí)的單調(diào)增區(qū)間為,要使內(nèi)單調(diào)遞增,則,綜上可知
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)上是減函數(shù),在上是增函數(shù),函數(shù)上有三個(gè)零點(diǎn),且是其中一個(gè)零點(diǎn).
(1)求的值;
(2)求的取值范圍;
(3)設(shè),且的解集為,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),若在區(qū)間上的最小值為-2,求的取值范圍;
(3)若對(duì)任意,且恒成立,求的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知關(guān)于x的函數(shù)
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)沒(méi)有零點(diǎn),求實(shí)數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),當(dāng)時(shí),.
(1)若函數(shù)在區(qū)間上存在極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍;
(3)試證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知f(x)=ax3+3x2+2,若f′(-1)=4,則a的值是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線處的切線與兩坐標(biāo)軸圍成的三角形的面積為4,則   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,函數(shù)y=f(x)在點(diǎn)P處的切線方程是y=-x+8,則f(5)+f′(5)=    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè),若,則(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案