已知定義域在R上的單調(diào)函數(shù),存在實(shí)數(shù)x0,使得對(duì)于任意的實(shí)數(shù)x1,x2總有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(1)=1,且對(duì)于任意的正整數(shù)n,有an=
1
f(n)
,bn=f(
1
2n
)+1
(Ⅰ)若Sn=a1a2+a2a3+…+anan+1,求Sn
(Ⅱ)若Tn=b1b2+b2b3+…+bnbn+1,求Tn
(1)令x1=x2=0,得f(0)=f(x0)+2f(0),∴f(x0)=-f(0)①
令x1=1,x2=0,得f(x0)=f(x0)+f(1)+f(0),∴f(1)=-f(0)②
由①②得f(x0)=f(1)
又∵f(x)是單調(diào)函數(shù),
∴x0=1
(2)由(1)可得 f(x1+x2)=f(1)+f(x1)+f(x2)+1
則f(n+1)=f(n)+f(1)+1=f(n)+2
又∵f(1)=1
∴f(n)=2n-1 (n∈N*),
∴an=
1
2n-1

∴Sn=
1
1×3
+
1
3×5
+…+
1
(2n-1)×(2n+1)
=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=
1
2
(1-
1
2n+1

又∵f(1)=f(
1
2
+
1
2
)=f(
1
2
)+f(
1
2
)+f(1),∴f(
1
2
)=0,∴b1=f(
1
2
)+1=1
∵f(
1
2n
)=f(
1
2n+1
+
1
2n+1
)=f(
1
2n+1
)+f(
1
2n+1
)+f(1)=2f(
1
2n+1
)+1
∴bn=f(
1
2n
)+1=2f(
1
2n+1
)+2=2bn+1
bn=b1×(
1
2
)
n-1
=(
1
2
)
n-1

∴bnbn+1=(
1
2
)
n-1
×(
1
2
)
n
=
1
2
×(
1
4
)
n-1

∴Tn=b1b2+b2b3+…+bnbn+1=
1
2
×(1- (
1
4
)
n
 )
1-
1
4
=
2
3
[1-(
1
4
)
n
]
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽上的函數(shù)f(x)滿足,對(duì)任意的x,y,恒有f(x-y)=
f(x)f(y)
且當(dāng)x>0時(shí),0<f(x)<1
,
(1)求證f(0)=1,且當(dāng)x<0時(shí)有f(x)>1.
(2)判斷f(x)在R上的單調(diào)性并證明.
(3)若對(duì)任意的x∈R,不等式f(ax2)•f(1-ax)>f(2)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=a+
12x+1
是奇函數(shù).
(1)求a的值;
(2)判斷函數(shù)f(x)在R上的單調(diào)性,并證明你的結(jié)論.
(3)是否存在實(shí)數(shù)k,對(duì)于任意t∈[1,2],不等式f(t2-2t)+f(2t2-k)>0恒成立,若存在,求出實(shí)數(shù)k的取值范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)=a-
1
2x+1
是奇函數(shù),其中a為實(shí)數(shù).
(1)求a的值;  
(2)判斷函數(shù)f(x)在其定義域上的單調(diào)性并證明;
(3)當(dāng)m+n≠0時(shí),證明
f(m)+f(n)
m+n
>f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶山區(qū)一模)已知函數(shù)f(x)=
-3x+a3x+1+b

(1)當(dāng)a=b=1時(shí),求滿足f(x)≥3x的x的取值范圍;
(2)若y=f(x)的定義域?yàn)镽,又是奇函數(shù),求y=f(x)的解析式,判斷其在R上的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)镽,對(duì)于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)<0,若f(-1)=2.
(1)求證:f(x)為奇函數(shù);
(2)判斷f(x)在R上的單調(diào)性(說(shuō)明理由);并求函數(shù)f(x)在區(qū)間[-2,4]上的值域.
(3)若對(duì)任意t∈[1,3],不等式f(t2-2kt)+f(2t2-1)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案