(本小題滿分10分)如圖,已知,、分別是兩邊上的動點。
(1)當(dāng),時,求的長;
(2)、長度之和為定值4,求線段最小值。
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,曲線為為參數(shù))。在以為原點,軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,射線為,與的交點為,與除極點外的一個交點為。當(dāng)時,。
(1)求,的直角坐標(biāo)方程;
(2)設(shè)與軸正半軸交點為,當(dāng)時,設(shè)直線與曲線的另一個交點為,求。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程已知極坐標(biāo)系的極點在直角坐標(biāo)系的原點處,極軸與軸非負(fù)半軸重合.直線的參數(shù)方程為:(為參數(shù)),曲線的極坐標(biāo)方程為:.
(1)寫出曲線的直角坐標(biāo)方程,并指明是什么曲線;
(2)設(shè)直線與曲線相交于兩點,求的值.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分) 在直角坐標(biāo)系中,以極點,軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為分別為與軸,軸的交點
(1)寫出的直角坐標(biāo)方程,并求出的極坐標(biāo)
(2)設(shè)的中點為,求直線的極坐標(biāo)方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(選修4-4:坐標(biāo)系與參數(shù)方程) (本小題滿分10分)
在直角坐標(biāo)系xoy中,直線的參數(shù)方程為(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線交于點A、B,若點P的坐標(biāo)為,求|PA|+|PB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
((本小題滿分10分)
選修4—4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù)),曲線C的極坐標(biāo)方程是,以極點為原點,極軸為軸正方向建立直角坐標(biāo)系,點,直線與曲線C交于A、B兩點.
(1)寫出直線的極坐標(biāo)方程與曲線C的普通方程;
(2) 線段MA,MB長度分別記為|MA|,|MB|,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知極坐標(biāo)系的極點O與直角坐標(biāo)系的原點重合,極軸與軸的正半軸重合,曲線與曲線(參數(shù))交于A、B兩點,
(1)求證:;
(2)求的外接圓的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖所示,在△ABC中,AD⊥BC于D,下列條件:
(1)∠B+∠DAC=90°;
(2)∠B=∠DAC;
(3)=;
(4)AB2=BD·BC.
其中一定能夠判定△ABC是直角三角形的共有
A.3個 B.2個 C.1個 D.0個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com