(本小題滿分10分)如圖,已知、分別是兩邊上的動點。
(1)當(dāng),時,求的長;
(2)、長度之和為定值4,求線段最小值。


(1)
(2)時,取到最小值,最小值是2

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,曲線為參數(shù))。在以為原點,軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,射線為,與的交點為,與除極點外的一個交點為。當(dāng)時,。
(1)求的直角坐標(biāo)方程;
(2)設(shè)軸正半軸交點為,當(dāng)時,設(shè)直線與曲線的另一個交點為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程已知極坐標(biāo)系的極點在直角坐標(biāo)系的原點處,極軸與軸非負(fù)半軸重合.直線的參數(shù)方程為:為參數(shù)),曲線的極坐標(biāo)方程為:
(1)寫出曲線的直角坐標(biāo)方程,并指明是什么曲線;
(2)設(shè)直線與曲線相交于兩點,求的值.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分) 在直角坐標(biāo)系中,以極點,軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為分別為軸,軸的交點
(1)寫出的直角坐標(biāo)方程,并求出的極坐標(biāo)
(2)設(shè)的中點為,求直線的極坐標(biāo)方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(選修4-4:坐標(biāo)系與參數(shù)方程) (本小題滿分10分)
在直角坐標(biāo)系xoy中,直線的參數(shù)方程為(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線交于點A、B,若點P的坐標(biāo)為,求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

點P是△ABC所在平面內(nèi)的一點,且滿足,則△PAC的面積與△ABC的面積之比為(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

((本小題滿分10分)
選修4—4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為為參數(shù)),曲線C的極坐標(biāo)方程是,以極點為原點,極軸為軸正方向建立直角坐標(biāo)系,點,直線與曲線C交于A、B兩點.
(1)寫出直線的極坐標(biāo)方程與曲線C的普通方程;
(2) 線段MA,MB長度分別記為|MA|,|MB|,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知極坐標(biāo)系的極點O與直角坐標(biāo)系的原點重合,極軸與軸的正半軸重合,曲線與曲線(參數(shù))交于A、B兩點,
(1)求證:;
(2)求的外接圓的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖所示,在△ABC中,AD⊥BC于D,下列條件:

(1)∠B+∠DAC=90°;
(2)∠B=∠DAC;
(3)
(4)AB2=BD·BC.
其中一定能夠判定△ABC是直角三角形的共有
A.3個    B.2個     C.1個    D.0個

查看答案和解析>>

同步練習(xí)冊答案