【題目】已知無(wú)窮集合A,B,且,,記,定義:滿足時(shí),則稱集合AB互為完美加法補(bǔ)集”.

(Ⅰ)已知集合,.判斷20192020是否屬于集合,并說(shuō)明理由;

(Ⅱ)設(shè)集合,.

(。┣笞C:集合A,B互為完美加法補(bǔ)集

(ⅱ)記分別表示集合A,B中不大于n)的元素個(gè)數(shù),寫出滿足的元素n的集合.(只需寫出結(jié)果,不需要證明)

【答案】(Ⅰ),;見(jiàn)解析(Ⅱ)(。┮(jiàn)解析;(ⅱ)

【解析】

(Ⅰ)由a為奇數(shù),b為偶數(shù),可得為奇數(shù),即可判斷20192020是否屬于集合;

(Ⅱ)(ⅰ)對(duì)于任意自然數(shù)p可表示為唯一一數(shù)組(,,,,),其中,1,1,,k,,使得,,1;,1k,,考慮自然數(shù)p的個(gè)數(shù)即可得證;再證

,其中,1;1;,1,,k,則.由反證法即可得證;

(ⅱ)考慮集合中元素為奇數(shù),可為.

(Ⅰ)由,是奇數(shù),

當(dāng),時(shí),,

所以,;

(Ⅱ)(ⅰ)首先證明:對(duì)于任意自然數(shù)p可表示為唯一一數(shù)組(,,,),

其中,1;,1,k,

使得,1;,1,,k,

由于,

這種形式的自然數(shù)p至多有個(gè),且最大數(shù)不超過(guò).

1;1,k,,每個(gè)都有兩種可能,

所以這種形式的自然數(shù)p共有個(gè)結(jié)果.

下證

,

其中,1;,1,1,,k,,則.

假設(shè)存在中,取i最大數(shù)為j,

所以不可能.

綜上,任意正整數(shù)p可唯一表示為

顯然,,

滿足,所以集合A,B互為完美加法補(bǔ)集”.

(ⅱ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,且,,平面平面ABC.

1)求證:平面平面;

2)若,,求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】人們通常以分貝(符號(hào)是)為單位來(lái)表示聲音強(qiáng)度的等級(jí),30~40分貝是較理想的安靜環(huán)境,超過(guò)50分貝就會(huì)影響睡眠和休息,70分貝以上會(huì)干擾談話,長(zhǎng)期生活在90分貝以上的嗓聲環(huán)境,會(huì)嚴(yán)重影響聽(tīng)力和引起神經(jīng)衰弱、頭疼、血壓升高等疾病,如果突然暴露在高達(dá)150分貝的噪聲環(huán)境中,聽(tīng)覺(jué)器官會(huì)發(fā)生急劇外傷,引起鼓膜破裂出血,雙耳完全失去聽(tīng)力,為了保護(hù)聽(tīng)力,應(yīng)控制噪聲不超過(guò)90分貝,一般地,如果強(qiáng)度為的聲音對(duì)應(yīng)的等級(jí)為,則有,則的聲音與的聲音強(qiáng)度之比為(

A.10B.100C.1000D.10000

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)(其中,m,n為常數(shù))

1)當(dāng)時(shí),對(duì)恒成立,求實(shí)數(shù)n的取值范圍;

2)若曲線處的切線方程為,函數(shù)的零點(diǎn)為,求所有滿足的整數(shù)k的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)舉行了科學(xué)防疫知識(shí)競(jìng)賽.經(jīng)過(guò)選拔,甲、乙、丙三位選手進(jìn)入了最后角逐.他們還將進(jìn)行四場(chǎng)知識(shí)競(jìng)賽.規(guī)定:每場(chǎng)知識(shí)競(jìng)賽前三名的得分依次為a,b,c,且ab,);選手總分為各場(chǎng)得分之和.四場(chǎng)比賽后,已知甲最后得分為16分,乙和丙最后得分都為8分,且乙只有一場(chǎng)比賽獲得了第一名,則下列說(shuō)法正確的是(

A.每場(chǎng)比賽的第一名得分a4

B.甲至少有一場(chǎng)比賽獲得第二名

C.乙在四場(chǎng)比賽中沒(méi)有獲得過(guò)第二名

D.丙至少有一場(chǎng)比賽獲得第三名

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求曲線在點(diǎn)處的切線方程;

2)求的單調(diào)區(qū)間;

3)若對(duì)于任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,證明:當(dāng)時(shí),;

2)若的極大值點(diǎn),求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某健身機(jī)構(gòu)統(tǒng)計(jì)了去年該機(jī)構(gòu)所有消費(fèi)者的消費(fèi)金額(單位:元),如圖所示:

(1)現(xiàn)從去年的消費(fèi)金額超過(guò)3200元的消費(fèi)者中隨機(jī)抽取2人,求至少有1位消費(fèi)者,其去年的消費(fèi)者金額在的范圍內(nèi)的概率;

(2)針對(duì)這些消費(fèi)者,該健身機(jī)構(gòu)今年欲實(shí)施入會(huì)制,詳情如下表:

預(yù)計(jì)去年消費(fèi)金額在內(nèi)的消費(fèi)者今年都將會(huì)申請(qǐng)辦理普通會(huì)員,消費(fèi)金額在內(nèi)的消費(fèi)者都將會(huì)申請(qǐng)辦理銀卡會(huì)員,消費(fèi)金額在內(nèi)的消費(fèi)者都將會(huì)申請(qǐng)辦理金卡會(huì)員,消費(fèi)者在申請(qǐng)辦理會(huì)員時(shí),需一次性繳清相應(yīng)等級(jí)的消費(fèi)金額,該健身機(jī)構(gòu)在今年底將針對(duì)這些消費(fèi)者舉辦消費(fèi)返利活動(dòng),現(xiàn)有如下兩種預(yù)設(shè)方案:

方案1:按分層抽樣從普通會(huì)員,銀卡會(huì)員,金卡會(huì)員中總共抽取25位“幸運(yùn)之星”給予獎(jiǎng)勵(lì):

普通會(huì)員中的“幸運(yùn)之星”每人獎(jiǎng)勵(lì)500元;銀卡會(huì)員中的“幸運(yùn)之星”每人獎(jiǎng)勵(lì)600元;金卡會(huì)員中的“幸運(yùn)之星”每人獎(jiǎng)勵(lì)800元.

方案二:每位會(huì)員均可參加摸獎(jiǎng)游戲,游戲規(guī)則如下:從一個(gè)裝有3個(gè)白球、2個(gè)紅球(球只有顏色不同)的箱子中,有放回地摸三次球,每次只能摸一個(gè)球,若摸到紅球的總數(shù)為2,則可獲得200元獎(jiǎng)勵(lì)金;若摸到紅球的總數(shù)為3,則可獲得300元獎(jiǎng)勵(lì)金;其他情況不給予獎(jiǎng)勵(lì). 規(guī)定每位普通會(huì)員均可參加1次摸獎(jiǎng)游戲;每位銀卡會(huì)員均可參加2次摸獎(jiǎng)游戲;每位金卡會(huì)員均可參加3次摸獎(jiǎng)游戲(每次摸獎(jiǎng)的結(jié)果相互獨(dú)立)

請(qǐng)你預(yù)測(cè)哪一種返利活動(dòng)方案該健身機(jī)構(gòu)的投資較少?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周碑算經(jīng)》一書作序時(shí),介紹了勾股圓方圖,又稱趙爽弦圖(以弦為邊長(zhǎng)得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的,如圖(1)),類比趙爽弦圖,可類似地構(gòu)造如圖(2)所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小正三角形組成的一個(gè)大正三角形,設(shè),若在大正三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正三角形的概率為(

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案