【題目】A,B,C三個班共有100名學生,為調查他們的體育鍛煉情況,通過分層抽樣獲得了部分學生一周的鍛煉時間,數(shù)據如下表(單位:小時):

A

6 6.5 7 7.5 8

B

6 7 8 9 10 11 12

C

3 4.5 6 7.5 9 10.5 12 13.5

)試估計C班的學生人數(shù);

)從A班和C班抽出的學生中,各隨機選取一人,A班選出的人記為甲,C班選出的人記為乙.假設所有學生的鍛煉時間相互獨立,求該周甲的鍛煉時間比乙的鍛煉時間長的概率;

)再從A,BC三個班中各隨機抽取一名學生,他們該周的鍛煉時間分別是7,9,8.25(單位:小時).3個新數(shù)據與表格中的數(shù)據構成的新樣本的平均數(shù)記為,表格中數(shù)據的平均數(shù)記為,試判斷的大小.(結論不要求證明)

【答案】40;(;(III.

【解析】

試題()根據圖表,結合分層抽樣的抽樣比計算C班的學生人數(shù);

)根據題意列出該周甲的鍛煉時間比乙的鍛煉時間長的所有事件,由相互獨立事件概率公式求解.

)根據平均數(shù)公式進行判斷即可.

試題解析:()由題意知,抽出的名學生中,來自C班的學生有.根據分層抽樣方法,C班的學生人數(shù)估計為.

)設事件甲是現(xiàn)有樣本中A班的第個人,

事件乙是現(xiàn)有樣本中C班的第個人,,

由題意可知,;.

,,.

設事件該周甲的鍛煉時間比乙的鍛煉時間長”.由題意知,

.

因此

.

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】定義上的函數(shù),若滿足:對任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界.

(1)設,判斷上是否有界函數(shù),若是,請說明理由,并寫出的所有上界的值的集合,若不是,也請說明理由;

(2)若函數(shù)上是以3為上界的有界函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,,函數(shù).

1)設,,若是奇函數(shù),求的值;

2)設,判斷函數(shù)上的單調性并加以證明;

3)設,,,函數(shù)的圖象是否關于某垂直于軸的直線對稱?如果是,求出該對稱軸,如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合是滿足下列性質的函數(shù)的全體,存在實數(shù),對于定義域內的任意均有成立,稱數(shù)對為函數(shù)的“伴隨數(shù)對”.

(1)判斷是否屬于集合,并說明理由;

(2)若函數(shù),求滿足條件的函數(shù)的所有“伴隨數(shù)對”;

(3)若,都是函數(shù)的“伴隨數(shù)對”,當時,;當時,.求當時,函數(shù)的零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(1)若曲線在點處的切線與直線平行,求滿足的關系;

(2)當時,討論的單調性;

(3)當時,對任意的,總有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)(a,);

(1)若,求證:函數(shù)的圖像必過定點;

(2)若,證明:在區(qū)間上的最大值;

(3)存在實數(shù)a,使得當時,恒成立,求實數(shù)b的最大值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,橢圓的四個頂點圍成的四邊形的面積為4.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)直線與橢圓交于 兩點, 的中點在圓上,求為坐標原點)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且點在函數(shù)的圖像上;

1)求數(shù)列的通項公式;

2)設數(shù)列滿足:,,求的通項公式;

3)在第(2)問的條件下,若對于任意的,不等式恒成立,求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在位于城市A南偏西相距100海里的B處,一股臺風沿著正東方向襲來,風速為120海里/小時,臺風影響的半徑為海里

1)若,求臺風影響城市A持續(xù)的時間(精確到1分鐘)?

2)若臺風影響城市A持續(xù)的時間不超過1小時,求的取值范圍

查看答案和解析>>

同步練習冊答案