【題目】已知定義域?yàn)?/span>的函數(shù)對(duì)任意實(shí)數(shù)滿足:,且,,并且當(dāng)時(shí),.給出如下結(jié)論:①函數(shù)是偶函數(shù);②函數(shù)上單調(diào)遞增;③函數(shù)是以2為周期的周期函數(shù);④.其中正確的結(jié)論是(

A.①②B.②③C.①④D.③④

【答案】B

【解析】

①令y=-x,利用函數(shù)的奇偶性定義和題中關(guān)系式,可推導(dǎo)出f(-x)=-f(x)的關(guān)系是奇函數(shù)非偶函數(shù);②令,利用函數(shù)單調(diào)性定義和題中關(guān)系式,可判斷f(x1)>f(x2)可得為增函數(shù);③由題中關(guān)系式用x+2代x,-xy,可推導(dǎo)f(x+2)=f(x);④利用函數(shù)周期性將f()化簡(jiǎn)為f().

,可得,∴,函數(shù)是奇函數(shù),故①不正確;

設(shè),則∵當(dāng)時(shí),,

,∴,∴函數(shù)上單調(diào)遞增,故②正確;

,∴,

∴函數(shù)是以2為周期的周期函數(shù),故③正確;

,故④不正確;

綜上所述:答案為B.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱柱的底面是邊長(zhǎng)為的菱形,且平面,,于點(diǎn),點(diǎn)的中點(diǎn).

1)求證:平面;

2)求平面和平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“工資條里顯紅利,個(gè)稅新政人民心”.隨著2019年新年鐘聲的敲響,我國(guó)自1980年以來(lái),力度最大的一次個(gè)人所得稅(簡(jiǎn)稱個(gè)稅)改革迎來(lái)了全面實(shí)施的階段.201911日實(shí)施的個(gè)稅新政主要內(nèi)容包括:(1)個(gè)稅起征點(diǎn)為5000元;(2)每月應(yīng)納稅所得額(含稅)=收入-個(gè)稅起征點(diǎn)-專項(xiàng)附加扣除;(3)專項(xiàng)附加扣除包括住房、子女教育和贍養(yǎng)老人等.

新舊個(gè)稅政策下每月應(yīng)納稅所得額(含稅)計(jì)算方法及其對(duì)應(yīng)的稅率表如下:

舊個(gè)稅稅率表(個(gè)稅起征點(diǎn)3500)

新個(gè)稅稅率表(個(gè)稅起征點(diǎn)5000)

繳稅級(jí)數(shù)

每月應(yīng)納稅所得額(含稅)=收入-個(gè)稅起征點(diǎn)

稅率(%)

每月應(yīng)納稅所得額(含稅)=收入-個(gè)稅起征點(diǎn)-專項(xiàng)附加扣除

稅率(%)

1

不超過(guò)1500元部分

3

不超過(guò)3000元部分

3

2

超過(guò)1500元至4500元部分

10

超過(guò)3000元至12000元部分

10

3

超過(guò)4500元至9000元的部分

20

超過(guò)12000元至25000元的部分

20

4

超過(guò)9000元至35000元的部分

25

超過(guò)25000元至35000元的部分

25

5

超過(guò)35000元至55000元部分

30

超過(guò)35000元至55000元部分

30

···

···

···

···

···

隨機(jī)抽取某市1000名同一收入層級(jí)的從業(yè)者的相關(guān)資料,經(jīng)統(tǒng)計(jì)分析,預(yù)估他們2019年的人均月收入24000.統(tǒng)計(jì)資料還表明,他們均符合住房專項(xiàng)扣除;同時(shí),他們每人至多只有一個(gè)符合子女教育扣除的孩子,并且他們之中既不符合子女教育扣除又不符合贍養(yǎng)老人扣除、只符合子女教育扣除但不符合贍養(yǎng)老人扣除、只符合贍養(yǎng)老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合贍養(yǎng)老人扣除的人數(shù)之比是2:1:1:1;此外,他們均不符合其他專項(xiàng)附加扣除.新個(gè)稅政策下該市的專項(xiàng)附加扣除標(biāo)準(zhǔn)為:住房1000/,子女教育每孩1000/,贍養(yǎng)老人2000/月等。

假設(shè)該市該收入層級(jí)的從業(yè)者都獨(dú)自享受專項(xiàng)附加扣除,將預(yù)估的該市該收入層級(jí)的從業(yè)者的人均月收入視為其個(gè)人月收入.根據(jù)樣本估計(jì)總體的思想,解決如下問(wèn)題:

1)設(shè)該市該收入層級(jí)的從業(yè)者2019年月繳個(gè)稅為,的分布列和期望;

2)根據(jù)新舊個(gè)稅方案,估計(jì)從20191月開(kāi)始,經(jīng)過(guò)多少個(gè)月,該市該收入層級(jí)的從業(yè)者各月少繳交的個(gè)稅之和就超過(guò)2019年的月收入?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)列,定義變換”:將數(shù)列變換成數(shù)列,其中,且,這種變換記作.繼續(xù)對(duì)數(shù)列進(jìn)行變換,得到數(shù)列,依此類推,當(dāng)?shù)玫降臄?shù)列各項(xiàng)均為時(shí)變換結(jié)束.

(1)試問(wèn)經(jīng)過(guò)不斷的變換能否結(jié)束?若能,請(qǐng)依次寫(xiě)出經(jīng)過(guò)變換得到的各數(shù)列;若不能,說(shuō)明理由;

(2)求經(jīng)過(guò)有限次變換后能夠結(jié)束的充要條件;

(3)證明:一定能經(jīng)過(guò)有限次變換后結(jié)束.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面平面,四邊形都是邊長(zhǎng)為2的正方形,點(diǎn)分別是,的中點(diǎn),二面角的大小為60°.

1)求證:平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,,點(diǎn)FE分別是BC、CD的中點(diǎn),現(xiàn)沿AE折起,使點(diǎn)D至點(diǎn)M的位置,且.

1)證明:平面MEF;

2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為,a為常數(shù))),過(guò)點(diǎn)、傾斜角為的直線的參數(shù)方程滿足,(為參數(shù)).

(1)求曲線C的普通方程和直線的參數(shù)方程;

(2)若直線與曲線C相交于A、B兩點(diǎn)(點(diǎn)P在A、B之間),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,平面,,,的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,則曲線的極坐標(biāo)方程為.

1)求圓的普通方程與的直角坐標(biāo)方程;

2)點(diǎn)是曲線上一點(diǎn),由向圓引切線,切點(diǎn)分別為,求四邊形面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案