已知{an}是各項均為正數(shù)的等差數(shù)列,lga1、lga2、lga4成等差數(shù)列.又bn=
1
a2n
,n=1,2,3,….
(Ⅰ)證明{bn}為等比數(shù)列;
(Ⅱ)如果數(shù)列{bn}前3項的和等于
7
24
,求數(shù)列{an}的首項a1和公差d.
分析:(Ⅰ)設(shè){an}中首項為a1,公差為d.lga1,lga2,lga4成等差數(shù)列,把11和d代入求得d,進而分別當d=0,整理可得 bn+1•bn=1,進而判斷出{bn}為等比數(shù)列;進而討論d=a1時,整理即可判斷出{bn}為等比數(shù)列.
(Ⅱ)把第一問所求結(jié)論分別代入即可求出數(shù)列{an}的首項a1和公差d.
解答:解:(Ⅰ)證明:設(shè){an}中首項為a1,公差為d.
∵lga1,lga2,lga4成等差數(shù)列∴2lga2=lga1+lga4
∴a22=a1•a4
即(a1+d)2=a1(a1+3d)∴d=0或d=a1
當d=0時,an=a1,bn=
1
a2n
=
1
a1
,∴
bn+1
bn
=1,∴{bn}為等比數(shù)列;
當d=a1時,an=na1,bn=
1
a2n
=
1
2na1
,∴
bn+1
bn
=
1
2
,∴{bn}為等比數(shù)列.
綜上可知{bn}為等比數(shù)列.
(Ⅱ)當d=0時,s3=b1+b2+b3=
3
a1
=
7
24
,所以a1=
72
7
;
當d=a1時,S3=
1
21a1
+
1
22a1
+
1
23a1
=
7
24
,
所以
7
8a1
=
7
24
,故a1=3=d.
綜上可知
a1=
72
7
d=0
a1=3
d=3
點評:本題主要考查等差數(shù)列與等比數(shù)列的綜合以及分類討論思想的應用,涉及數(shù)列的公式多,復雜多樣,故應多下點功夫記憶.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知{an}是各項均為正數(shù)的等差數(shù)列,lga1、lga2、lga4成等差數(shù)列.又bn=
1
a2n
,n=1,2,3,….
(Ⅰ)證明{bn}為等比數(shù)列;
(Ⅱ)如果無窮等比數(shù)列{bn}各項的和S=
1
3
,求數(shù)列{an}的首項a1和公差d.
(注:無窮數(shù)列各項的和即當n→∞時數(shù)列前項和的極限)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是各項均為正數(shù)的等差數(shù)列,lga1,lga2,lga4成等差數(shù)列.又bn=
1
a2n
,n=1,2,3,….
(Ⅰ)證明{bn}為等比數(shù)列;
(Ⅱ)如果數(shù)列{bn}前3項的和等于
7
24
,求數(shù)列{an}的首項a1和公差d.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是各項均為正數(shù)的等比數(shù)列a1+a2=2(
1
a1
+
1
a2
),a3+a4+a5=64(
1
a3
+
1
a4
+
1
a5

(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)bn=(an+
1
an
2,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是各項均為正數(shù)的等比數(shù)列,且a1+a2=2(
1
a1
+
1
a2
),a3+a4=32(
1
a3
+
1
a4
)

(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)bn=an2+log2an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是各項均為正數(shù)的等比數(shù)列,且a1與a5的等比中項為2,則a2+a4的最小值等于
 

查看答案和解析>>

同步練習冊答案