若圓與圓相交于,則的面積為________.

試題分析:根據(jù)題意,由于圓與圓,兩式作差可知為y=1即為AB的方程,然后結(jié)合直線y=1與圓相交可知圓的半徑為2,圓心到直線的距離為1,可知半弦長(zhǎng)為,那么的面積為 ,故答案為。
點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)兩圓的方程得到相交弦所在直線的方程,進(jìn)而結(jié)合直線與圓相交得到弦長(zhǎng),進(jìn)而得到面積。屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線與圓相切,若對(duì)任意的均有不等式成立,那么正整數(shù)的最大值是(  )
A.3B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若實(shí)數(shù)滿足,的取值范圍為(   ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C與兩坐標(biāo)軸都相切,圓心C到直線的距離等于.
(1)求圓C的方程.
(2)若直線與圓C相切,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求直線被圓所截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓過點(diǎn),且與直線相切于點(diǎn)
(1)求圓的方程;
(2)求圓關(guān)于直線對(duì)稱的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

球面上有三個(gè)點(diǎn)A、B、C. A和B,A和C間的球面距離等于大圓周長(zhǎng)的. B和C間的球面距離等于大圓周長(zhǎng)的.如果球的半徑是R,那么球心到截面ABC的距離等于( )
A.     B.       C.    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

不論為何實(shí)數(shù),直線與曲線恒有交點(diǎn),則實(shí)數(shù)的取值范圍為                   。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直線,圓方程為
(1)求證:直線和圓相交
(2)當(dāng)圓截直線所得弦最長(zhǎng)時(shí),求的值
(3)直線將圓分成兩個(gè)弓形,當(dāng)弓形面積之差最大時(shí),求直線方程

查看答案和解析>>

同步練習(xí)冊(cè)答案