過點A(0,2)可以作 ______條直線與雙曲線x2-
y2
4
=1
有且只有一個公共點.
如圖所示:有兩條切線和兩條與漸近線平行的直線
一共有4條直線.
故答案為:4
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點P(1,1)作直線與雙曲線x2-
y2
2
=1
交于A、B兩點,使點P為AB中點,則這樣的直線( 。
A.存在一條,且方程為2x-y-1=0
B.存在無數(shù)條
C.存在兩條,方程為2x±(y+1)=0
D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C:x2-
y2
2
=1
,過點P(-1,-2)的直線交C于A,B兩點,且點P為線段AB的中點.
(1)求直線AB的方程;
(2)求弦長|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點M(
3
,0),橢圓
x2
4
+y2=1與直線y=k(x+
3
)交于點A、B,則△ABM的周長為( 。
A.4B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,線段MN的兩個端點M、N分別在x軸、y軸上滑動,|MN|=5,點P是線段MN上一點,且
MP
=
2
3
PN
,點P隨線段MN的運動而變化.
(1)求點P的軌跡C的方程;
(2)過點(2,0)作直線l,與曲線C交于A、B兩點,O是坐標(biāo)原點,設(shè)
OS
=
OA
+
OB
,是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直線y=x-2上是否存在點P,使得經(jīng)過點P能作出拋物線y=
1
2
x2
的兩條互相垂直的切線?若存在,求點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(1,
q
2
)
,且離心率e=
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點M、N,且線段MN的垂直平分線過定點G(
1
8
,0)
,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(A題)如圖,在橢圓
x2
a2
+
y2
8
=1(a>0)中,F(xiàn)1,F(xiàn)2分別是橢圓的左右焦點,B,D分別為橢圓的左右頂點,A為橢圓在第一象限內(nèi)弧上的任意一點,直線AF1交y軸于點E,且點F1,F(xiàn)2三等分線段BD.
(1)若四邊形EBCF2為平行四邊形,求點C的坐標(biāo);
(2)設(shè)m=
S△AF1O
S△AEO
,n=
S△CF1O
S△CEO
,求m+n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右頂點分別為A,B,點P在橢圓上且異于A,B兩點,O為坐標(biāo)原點.
(1)若直線AP與BP的斜率之積為-
1
2
,求橢圓的離心率;
(2)若|AP|=|OA|,證明直線OP的斜率k滿足|k|>
3

查看答案和解析>>

同步練習(xí)冊答案