【題目】已知正數(shù)數(shù)列的前項(xiàng)和為,且滿足;在數(shù)列中,
(1)求數(shù)列和的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為. 若對(duì)任意,存在實(shí)數(shù),使恒成立,求的最小值.
【答案】(1),;(2)
【解析】分析:(1)當(dāng)時(shí),得,當(dāng)時(shí)化簡(jiǎn)可得為等差數(shù)列,故而可得的通項(xiàng)公式,對(duì)于,可構(gòu)造為首項(xiàng),公比為3的等比數(shù)列,故而可求的通項(xiàng)公式;(2)由錯(cuò)位相減法可求出,根據(jù)的單調(diào)性可求出,的值,即可得結(jié)果.
詳解:(1)對(duì):當(dāng)時(shí),知
當(dāng)時(shí),由 相減得:
∴
∵,∴
即 為首項(xiàng),公差為1的等差數(shù)列
∴
對(duì):由題
∴
∴為首項(xiàng),公比為3的等比數(shù)列
∴ 即
(2)由題知
……………………①
……………………②
①—② 得:
∴
易知:遞增,∴
又 ∴
由題知:
,即的最小值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上。若右焦點(diǎn)F到直線x-y+2=0的距離為3。
(1)求橢圓的方程;
(2)設(shè)直線y=kx+m(k≠0)與橢圓相交于不同的兩點(diǎn)M、N。當(dāng)|AM|=|AN|時(shí),求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線:,:,則下面結(jié)論正確的是( )
A. 把上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線
B. 把上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線
C. 把上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線
D. 把上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足,,設(shè).
(1)求;
(2)判斷數(shù)列是否為等比數(shù)列,并說(shuō)明理由;
(3)求的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),數(shù)列滿足, .
(Ⅰ)當(dāng)時(shí),求證:數(shù)列為等差數(shù)列并求;
(Ⅱ)證明:對(duì)于一切正整數(shù),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)f(x)=4sin(2x+), (x∈R)有下列命題:
①y=f(x)是以2π為最小正周期的周期函數(shù);
② y=f(x)可改寫為y=4cos(2x-);
③y=f(x)的圖象關(guān)于(-,0)對(duì)稱;
④ y=f(x)的圖象關(guān)于直線x=-對(duì)稱;
其中正確的序號(hào)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】盒子里放有外形相同且編號(hào)為1,2,3,4,5的五個(gè)小球,其中1號(hào)與2號(hào)是黑球,3號(hào)、4號(hào)與5號(hào)是紅球,從中有放回地每次取出1個(gè)球,共取兩次.
(1)求取到的2個(gè)球中恰好有1個(gè)是黑球的概率;
(2)求取到的2個(gè)球中至少有1個(gè)是紅球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一條光線經(jīng)過(guò)P(2,3)點(diǎn),射在直線l:x+y+1=0上,反射后穿過(guò)點(diǎn)Q(1,1).
(1)求入射光線的方程;
(2)求這條光線從P到Q的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知具有相關(guān)關(guān)系的兩個(gè)變量之間的幾組數(shù)據(jù)如下表所示:
(1)請(qǐng)根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計(jì)當(dāng)時(shí), 的值;
(3)將表格中的數(shù)據(jù)看作五個(gè)點(diǎn)的坐標(biāo),則從這五個(gè)點(diǎn)中隨機(jī)抽取2個(gè)點(diǎn),求這兩個(gè)點(diǎn)都在直線的右下方的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com