已知圓C經(jīng)過點A(1,3)、B(2,2),并且直線l:3x-2y=0平分圓C,求圓C的方程.
分析:求出AB的中垂線方程,圓心在直線3x-2y=0,求出圓心坐標,再求出圓的半徑,然后求圓C的方程;
解答:解:線段AB的中點E(
3
2
,
5
2
),kAB=
2-3
2-1
=-1

故線段AB中垂線的方程為y-
5
2
=x-
3
2
,即x-y+1=0
由圓C經(jīng)過A、B兩點,故圓心在線段AB的中垂線上
又直線3x-2y=0平分圓的面積,所以直線l經(jīng)過圓心
x-y+1=0
3x-2y=0
解得 
x=2
y=3
即圓心的坐標為C(2,3),
而圓的半徑r=|AC|=
(3-3)2+[2-1)2
=1
,
故圓C的方程為(x-2)2+(y-3)2=1.
點評:本題考查圓的標準方程,直線和圓的方程的應用,考查分析問題解決問題的能力,計算能力,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C經(jīng)過點A(1,2)、B(3,0),并且直線m:2x-3y=0平分圓C.
(1)求圓C的方程;
(2)過點D(0,3),且斜率為k的直線l與圓C有兩個不同的交點E、F,若|EF|≥2
3
,求k的取值范圍;
(3)若圓C關于點(
3
2
,1)
對稱的曲線為圓Q,設M(x1,y1)、P(x2,y2)(x1≠±x2)是圓Q上的兩個動點,點M關于原點的對稱點為M1,點M關于x軸的對稱點為M2,如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問m•n是否為定值?若是求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C經(jīng)過點A(1,3)、B(2,2),并且直線m:3x-2y=0平分圓C.
(1)求圓C的方程;
(2)若過點D(0,1),且斜率為k的直線l與圓C有兩個不同的交點M、N.
(Ⅰ)求實數(shù)k的取值范圍;
(Ⅱ)(文科不做)若
OM
ON
=12,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C經(jīng)過點A(1,4)、B(3,-2),圓心C到直線AB的距離為
10
,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C經(jīng)過點A(-1,0)和B(3,0),且圓心在直線x-y=0上.
(1)求圓C的方程;
(2)若點P(x,y)為圓C上任意一點,求點P到直線x+2y+4=0的距離的最大值和最小值.

查看答案和解析>>

同步練習冊答案