已知圓C的半徑為,圓心在直線上,且被直線截得的弦長為,求圓C的方程

.

解析試題分析:因為所求圓的圓心C在直線上,所以設(shè)圓心為,
所以可設(shè)圓的方程為,    
因為圓被直線截得的弦長為,則圓心到直線的距離
,即,解得.
所以圓的方程為.
考點:圓的方程;直線與圓的位置關(guān)系;點到直線的距離公式。
點評:(1)要求圓的方程,只需確定圓心和半徑。(2)當(dāng)直線與圓相交時,通常用到弦心距、半徑、弦長的一半構(gòu)成的直角三角形來求解。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C的半徑為2,圓心在軸正半軸上,直線與圓C相切
(1)求圓C的方程;
(2)過點的直線與圓C交于不同的兩點且為時,求:的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù))在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位。且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為
(I)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線l交于點A,B.若點P的坐標(biāo)為(1,2),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線為參數(shù)),圓(極軸與軸的非負半軸重合,且單位長度相同)。
⑴求圓心到直線的距離;
⑵若直線被圓截的弦長為,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
己知圓C: (x – 2 )+ y 2 =" 9," 直線l:x + y = 0.
(1) 求與圓C相切, 且與直線l平行的直線m的方程;
(2) 若直線n與圓C有公共點,且與直線l垂直,求直線n在y軸上的截距b的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
如圖,已知C、F是以AB為直徑的半圓上的兩點,且CFCB,過CCD^AFAF的延長線與點D

(Ⅰ)證明:CD為圓O的切線;
(Ⅱ)若AD=3,AB=4,求AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)已知與兩平行直線都相切,且圓心在直線上,
(Ⅰ)求的方程;
(Ⅱ)斜率為2的直線相交于兩點,為坐標(biāo)原點且滿足,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的焦點為圓的圓心,直線交于不同的兩點.
(1) 求的方程;
(2) 求弦長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)圓經(jīng)過點A(2,-3)和B(-2,-5).
(1)若圓的面積最小,求圓的方程;
(2)若圓心在直線x-2y-3=0上,求圓的方程.

查看答案和解析>>

同步練習(xí)冊答案