精英家教網 > 高中數學 > 題目詳情
已知橢圓C的長軸長與短軸長之比為
3
5
,焦點坐標分別為F1(-2,0),F(xiàn)2(2,0).
(1)求橢圓C的方程;
(2)已知A(-3,0),B(3,0),p(xp,yp)是橢圓C在第一象限部分上的一動點,且∠APB是鈍角,求xp的取值范圍;
分析:(1)根據題意可知c的值,進而根據
a
b
=
3
5
a2=b2+c2
求得b,橢圓的方程可得.
(2)先用xp和yp表示出
PA
PB
進而根據∠APB是鈍角判斷
PA
PB
<0
,進而根據橢圓方程求得xp的范圍,又根據點p在第一象限進而可得答案.
解答:解:(1)∵
a
b
=
3
5
,c=2,a2=b2+c2

∴a2=9,b2=5
所以橢圓C的標準方程為
x2
9
+
y2
5
=1

(2)∵
PA
=(-3-xp,-yp),
PB
=(3-xp,-yp)

且∠APB是鈍角
PA
PB
=xp2-9+yp2<0

又∵
xp2
9
+
yp2
5
=1

∴-3<xp<3
又∵點p在第一象限
所以:0<xp<3
點評:本題主要考查了橢圓的標準方程和向量的基本知識.考查了學生邏輯思維能力和綜合分析問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓C的長軸長與短軸長之比為
3
5
,焦點坐標分別為F1(-2,0),F(xiàn)2(2,0).
(1)求橢圓C的標準方程;
(2)已知A(-3,0),B(3,0),P是橢圓C上異于A、B的任意一點,直線AP、BP分別交y軸于M、N,求
OM
ON
的值;
(3)在(2)的條件下,若G(s,0),H(k,0),且
GM
HN
,(s<k),分別以OG、OH為邊作兩正方形,求此兩正方形的面積和的最小值,并求出取得最小值時的G、H點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C的長軸長與短軸長之比為
3
5
,焦點坐標分別為F1(-2,0),F(xiàn)2(2,0).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)已知A(-3,0),B(3,0),P是橢圓C上異于A、B的任意一點,直線AP、BP分別交y軸于M、N,求
OM
ON
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C的長軸長與短軸長之比為
3
5
,焦點坐標分別為F1(-2,0),F(xiàn)2(2,0).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)求以橢圓C長軸的端點為焦點,離心率e=
3
2
的雙曲線的標準方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓C的長軸長與短軸長之比為數學公式,焦點坐標分別為F1(-2,0),F(xiàn)2(2,0).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)求以橢圓C長軸的端點為焦點,離心率數學公式的雙曲線的標準方程.

查看答案和解析>>

同步練習冊答案