【題目】已知:橢圓的焦距為2,且經(jīng)過點(diǎn),是橢圓上異于的兩個(gè)動點(diǎn).
(1)求橢圓的方程;
(2)若,求證:直線過定點(diǎn),并求出該定點(diǎn)坐標(biāo).
【答案】(1);(2)證明見解析,定點(diǎn)坐標(biāo):.
【解析】
(1)通過橢圓的焦距為2,求出.結(jié)合橢圓經(jīng)過點(diǎn),列出方程組求解,,得到橢圓方程.
(2)設(shè),、,,
①直線的斜率存在時(shí),設(shè)直線的方程為,與橢圓方程聯(lián)立可得,,利用韋達(dá)定理推出,的關(guān)系式,利用向量的數(shù)量積推出,得到直線系,然后求解直線經(jīng)過的定點(diǎn);
②直線的斜率不存在時(shí),設(shè)直線的方程為,,,,判斷直線經(jīng)過的定點(diǎn)即可.
解:(1)因?yàn)闄E圓的焦距為2,且經(jīng)過點(diǎn)
所以解得
所以;
(2)設(shè),
①直線的斜率存在時(shí),設(shè)直線的方程為,
與橢圓方程聯(lián)立可得,,
∴(*)且,
∵,∴,
即,
化簡得,
將(*)式代入,得,,
∴,即或(舍,此時(shí)直線過點(diǎn))
∴直線的方程為,過定點(diǎn);
②直線的斜率不存在時(shí),設(shè)直線的方程為,,
可設(shè),且,由,
即,解得或(舍),
此時(shí)直線的方程為,也過定點(diǎn);
綜上,直線過定點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,且橢圓過點(diǎn).過點(diǎn)做兩條相互垂直的直線、分別與橢圓交于、、、四點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若, ,探究:直線是否過定點(diǎn)?若是,請求出定點(diǎn)坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:()的離心率,左、右焦點(diǎn)分別為、,,過點(diǎn)P的直線斜率為k,交橢圓E于A,B兩點(diǎn),.
(1)求橢圓E的方程;
(2)設(shè)A關(guān)于x軸的對稱點(diǎn)為C,證明:三點(diǎn)B、、C共線;
(3)若點(diǎn)B在一象限,A關(guān)于x軸的對稱點(diǎn)為C,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓Γ:1(a>b>0)的左、右焦點(diǎn)分別為F1,F2.短軸的兩個(gè)頂點(diǎn)與F1,F2構(gòu)成面積為2的正方形,
(1)求Γ的方程:
(2)如圖所示,過右焦點(diǎn)F2的直線1交橢圓Γ于A,B兩點(diǎn),連接AO交Γ于點(diǎn)C,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、是橢圓上不同的兩點(diǎn),的中點(diǎn)坐標(biāo)為.
(1)證明:直線經(jīng)過橢圓的右焦點(diǎn).
(2)設(shè)直線不經(jīng)過點(diǎn)且與橢圓相交于,兩點(diǎn),若直線與直線的斜率的和為1,試判斷直線是否經(jīng)過定點(diǎn),若經(jīng)過定點(diǎn),請求出該定點(diǎn);若不經(jīng)過定點(diǎn),請給出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、是橢圓上不同的兩點(diǎn),的中點(diǎn)坐標(biāo)為.
(1)證明:直線經(jīng)過橢圓的右焦點(diǎn).
(2)設(shè)直線不經(jīng)過點(diǎn)且與橢圓相交于,兩點(diǎn),若直線與直線的斜率的和為1,試判斷直線是否經(jīng)過定點(diǎn),若經(jīng)過定點(diǎn),請求出該定點(diǎn);若不經(jīng)過定點(diǎn),請給出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,錯(cuò)誤命題是
A. “若,則”的逆命題為真
B. 線性回歸直線必過樣本點(diǎn)的中心
C. 在平面直角坐標(biāo)系中到點(diǎn)和的距離的和為的點(diǎn)的軌跡為橢圓
D. 在銳角中,有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在上的函數(shù)滿足任意都有,且時(shí),,則,,的大小關(guān)系是( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com